Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36993278

ABSTRACT

Material- and cell-based technologies such as engineered tissues hold great promise as human therapies. Yet, the development of many of these technologies becomes stalled at the stage of pre-clinical animal studies due to the tedious and low-throughput nature of in vivo implantation experiments. We introduce a 'plug and play' in vivo screening array platform called Highly Parallel Tissue Grafting (HPTG). HPTG enables parallelized in vivo screening of 43 three-dimensional microtissues within a single 3D printed device. Using HPTG, we screen microtissue formations with varying cellular and material components and identify formulations that support vascular self-assembly, integration and tissue function. Our studies highlight the importance of combinatorial studies that vary cellular and material formulation variables concomitantly, by revealing that inclusion of stromal cells can "rescue" vascular self-assembly in manner that is material-dependent. HPTG provides a route for accelerating pre-clinical progress for diverse medical applications including tissue therapy, cancer biomedicine, and regenerative medicine.

2.
Adv Biol (Weinh) ; 7(5): e2200208, 2023 05.
Article in English | MEDLINE | ID: mdl-36328790

ABSTRACT

Liver disease affects millions globally, and end-stage liver failure is only cured by organ transplant. Unfortunately, there is a growing shortage of donor organs as well as inequitable access to transplants across populations. Engineered liver tissue grafts that supplement or replace native organ function can address this challenge. While engineered liver tissues have been successfully engrafted previously, the extent to which these tissues express human liver metabolic genes and proteins remains unknown. Here, it is built engineered human liver tissues and characterized their engraftment, expansion, and metabolic phenotype at sequential stages post-implantation by RNA sequencing, histology, and host serology. Expression of metabolic genes is observed at weeks 1-2, followed by the cellular organization into hepatic cords by weeks 4-9.5. Furthermore, grafted engineered tissues exhibited progressive spatially restricted expression of critical functional proteins known to be zonated in the native human liver. This is the first report of engineered human liver tissue zonation after implantation in vivo, which can have important translational implications for this field.


Subject(s)
End Stage Liver Disease , Liver Transplantation , Organ Transplantation , Humans , Tissue Engineering
3.
Cell Death Differ ; 27(1): 44-54, 2020 01.
Article in English | MEDLINE | ID: mdl-31065106

ABSTRACT

The facets of host control during Plasmodium liver infection remain largely unknown. We find that the SLC7a11-GPX4 pathway, which has been associated with the production of reactive oxygen species, lipid peroxidation, and a form of cell death called ferroptosis, plays a critical role in control of Plasmodium liver stage infection. Specifically, blocking GPX4 or SLC7a11 dramatically reduces Plasmodium liver stage parasite infection. In contrast, blocking negative regulators of this pathway, NOX1 and TFR1, leads to an increase in liver stage infection. We have shown previously that increased levels of P53 reduces Plasmodium LS burden in an apoptosis-independent manner. Here, we demonstrate that increased P53 is unable to control parasite burden during NOX1 or TFR1 knockdown, or in the presence of ROS scavenging or when lipid peroxidation is blocked. Additionally, SLC7a11 inhibitors Erastin and Sorafenib reduce infection. Thus, blocking the host SLC7a11-GPX4 pathway serves to selectively elevate lipid peroxides in infected cells, which localize within the parasite and lead to the elimination of liver stage parasites.


Subject(s)
Amino Acid Transport System y+/metabolism , Lipid Peroxidation , Liver Diseases/metabolism , Liver Diseases/parasitology , Malaria/metabolism , Amino Acid Transport System y+/antagonists & inhibitors , Animals , Cell Line , Cells, Cultured , Ferroptosis , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidase 1/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/antagonists & inhibitors , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Reactive Oxygen Species/metabolism , Receptors, Transferrin/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism
4.
Science ; 364(6439): 458-464, 2019 05 03.
Article in English | MEDLINE | ID: mdl-31048486

ABSTRACT

Solid organs transport fluids through distinct vascular networks that are biophysically and biochemically entangled, creating complex three-dimensional (3D) transport regimes that have remained difficult to produce and study. We establish intravascular and multivascular design freedoms with photopolymerizable hydrogels by using food dye additives as biocompatible yet potent photoabsorbers for projection stereolithography. We demonstrate monolithic transparent hydrogels, produced in minutes, comprising efficient intravascular 3D fluid mixers and functional bicuspid valves. We further elaborate entangled vascular networks from space-filling mathematical topologies and explore the oxygenation and flow of human red blood cells during tidal ventilation and distension of a proximate airway. In addition, we deploy structured biodegradable hydrogel carriers in a rodent model of chronic liver injury to highlight the potential translational utility of this materials innovation.


Subject(s)
Biocompatible Materials/chemistry , Biomimetic Materials/chemistry , Blood Vessels , Hydrogels/chemistry , Absorption, Physicochemical , Animals , Coloring Agents/chemistry , Disease Models, Animal , Erythrocytes/metabolism , Humans , Light , Liver , Lung Injury/therapy , Mice , Mice, Nude , Polymerization/radiation effects , Stereolithography
5.
iScience ; 4: 20-35, 2018 Jun 29.
Article in English | MEDLINE | ID: mdl-30240741

ABSTRACT

The endothelium first forms in the blood islands in the extra-embryonic yolk sac and then throughout the embryo to establish circulatory networks that further acquire organ-specific properties during development to support diverse organ functions. Here, we investigated the properties of endothelial cells (ECs), isolated from four human major organs-the heart, lung, liver, and kidneys-in individual fetal tissues at three months' gestation, at gene expression, and at cellular function levels. We showed that organ-specific ECs have distinct expression patterns of gene clusters, which support their specific organ development and functions. These ECs displayed distinct barrier properties, angiogenic potential, and metabolic rate and support specific organ functions. Our findings showed the link between human EC heterogeneity and organ development and can be exploited therapeutically to contribute in organ regeneration, disease modeling, as well as guiding differentiation of tissue-specific ECs from human pluripotent stem cells.

6.
Sci Transl Med ; 9(399)2017 07 19.
Article in English | MEDLINE | ID: mdl-28724577

ABSTRACT

Control of both tissue architecture and scale is a fundamental translational roadblock in tissue engineering. An experimental framework that enables investigation into how architecture and scaling may be coupled is needed. We fabricated a structurally organized engineered tissue unit that expanded in response to regenerative cues after implantation into mice with liver injury. Specifically, we found that tissues containing patterned human primary hepatocytes, endothelial cells, and stromal cells in a degradable hydrogel expanded more than 50-fold over the course of 11 weeks in mice with injured livers. There was a concomitant increase in graft function as indicated by the production of multiple human liver proteins. Histologically, we observed the emergence of characteristic liver stereotypical microstructures mediated by coordinated growth of hepatocytes in close juxtaposition with a perfused vasculature. We demonstrated the utility of this system for probing the impact of multicellular geometric architecture on tissue expansion in response to liver injury. This approach is a hybrid strategy that harnesses both biology and engineering to more efficiently deploy a limited cell mass after implantation.


Subject(s)
Liver Diseases/surgery , Liver/cytology , Albumins/metabolism , Animals , Hepatocytes/cytology , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate , Liver/pathology , Tissue Engineering/methods , Tissue Scaffolds , Transferrin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...