Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Article in English | MEDLINE | ID: mdl-38648669

ABSTRACT

Sex differences in metabolic dysfunction-associated steatotic liver disease (MASLD) have been reported. Oxidative stress and inflammation are involved in the progression of MASLD. Thus, we aimed to evaluate liver redox homeostasis and inflammation in male and female rats fed a high-fat diet (HFD). Male and female Wistar rats were divided into the following groups: standard chow diet (SCD) or HFD during 12 weeks. HFD groups of both sexes had higher hepatocyte injury, with no differences between the sexes. Portal space liver inflammation was higher in females-HFD compared to females-SCD, whereas no differences were observed in males. Lobular inflammation and overall liver inflammation were higher in HFD groups, regardless of sex. TNF-α, IL-6, and IL-1ß levels were higher in males-HFD compared to males-SCD, but no differences were observed in females. Catalase activity was higher in males compared to females, with no differences between the SCD and HFD groups of both sexes. Glutathione peroxidase activity was higher in females compared to males, with no differences between the SCD and HFD groups in both sexes. Lipid peroxidation was higher in female-SCD when compared to male-SCD, and in both male- and female-HFD compared to SCD groups. Furthermore, both cytoplasmic and nuclear NRF2 staining were lower in the HFD group compared to the SCD group in males. However, female-HFD exhibited reduced nuclear NRF2 staining compared to the female-SCD group. In conclusion, our study demonstrated that while both male and female rats developed metabolic dysfunction-associated steatohepatitis after 12 weeks of HFD, the alterations in inflammatory cytokines and redox balance were sexually dimorphic.

2.
Clin Nutr ESPEN ; 59: 96-106, 2024 02.
Article in English | MEDLINE | ID: mdl-38220413

ABSTRACT

BACKGROUND & AIMS: Turmeric (a source of curcumin) is an excellent food to modulate oxidative stress, inflammation, and gut dysbiosis in patients with chronic kidney disease (CKD). However, no studies report the benefits of curcumin in patients undergoing peritoneal dialysis (PD). This study aims to evaluate the effects of curcuminoid supplementation on oxidative stress, inflammatory markers, and uremic toxins originating from gut microbiota in patients with CKD undergoing PD. METHODS: This longitudinal, randomized, single-blind, placebo-controlled trial evaluated 48 patients who were randomized into two groups: Curcumin (three capsules of 500 mg of Curcuma longa extract, with 98.42 % total curcuminoids) or placebo (three capsules of 500 mg of starch) for twelve weeks. In the peripheral blood mononuclear cells (PBMCs), the transcriptional expression levels of Nrf2, HOX-1 and NF-κB were evaluated by quantitative real-time PCR. Oxidative stress was evaluated by malondialdehyde (MDA) and total Thiol (T-SH). TNF-α and IL-6 plasma levels were measured by ELISA. P-cresyl sulphate plasma level, a uremic toxin, was evaluated by high-performance liquid chromatography (HPLC) with fluorescent detection. RESULTS: Twenty-four patients finished the study: 10 in the curcumin group (57.5 ± 11.6 years) and 14 in the placebo group (56.5 ± 10.0 years). The plasma levels of MDA were reduced after 12 weeks in the curcumin group (p = 0.01), while the placebo group remained unchanged. However, regarding the difference between the groups at the endpoint, no change was observed in MDA. Still, there was a trend to reduce the p-CS plasma levels in the curcumin group compared to the placebo group (p = 0.07). Likewise, the concentrations of protein thiols, mRNA expression of Nrf2, HOX-1, NF-κB, and cytokines plasma levels did not show significant changes. CONCLUSION: Curcuminoid supplementation for twelve weeks attenuates lipid peroxidation and might reduce uremic toxin in patients with CKD undergoing PD. This study was registered on Clinicaltrials.gov as NCT04413266.


Subject(s)
Curcumin , Peritoneal Dialysis , Renal Insufficiency, Chronic , Uremia , Humans , Curcumin/pharmacology , Curcumin/therapeutic use , NF-kappa B/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Leukocytes, Mononuclear/metabolism , Single-Blind Method , Inflammation , Oxidative Stress , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/therapy , Diarylheptanoids/pharmacology , Diarylheptanoids/therapeutic use , Dietary Supplements , Uremia/drug therapy
3.
Obes Surg ; 33(10): 3193-3197, 2023 10.
Article in English | MEDLINE | ID: mdl-37589830

ABSTRACT

INTRODUCTION: Few studies have evaluated the impact of bariatric surgery (BS) on thyroid function and morphology, and how it correlates to inflammatory and metabolic markers. We aimed to evaluate all those parameters together. METHODS: A longitudinal study included 70 patients with severe obesity. The bariatric group (BG) enrolled 40 patients who underwent BS, and the control group (CG) enrolled 30 patients who did not undergo BS. Both were submitted (pre- and 2nd-year) to thyroid ultrasound and laboratory analyses to determine the levels of thyroid hormones, inflammatory, and metabolic markers. RESULTS: Thyroid volume (TV) decreased after BS (-1.5 cm3), differing significantly from the CG (+0.6 cm3; p = 0.003). ΔTV was independently and positively correlated with ΔHOMA-IR (0.41 (0.11/7.16) p = 0.007) and ΔIL6 (0.02 (0.01/0.3) p = 0.016). A nonsignificant correlation between ΔTV and ΔBMI was detected (0.38 (-0.01/0.09) p = 0.152). We also observed a negative correlation between ΔTV and ΔTSH (-2.03 (-2.87/-1.19) p = 0.000) and ΔT3/T4 ratio (-0.06 (-0.09/-0.02) p = 0.001). TSH had a nonsignificant reduction with BS (-0.3872 vs. -0.2483 p = 0.128). The conversion of T4 to T3 had a significant increase after BS, as demonstrated by the T3/T4 ratio (+5.16 p = 0.01). Despite an increase in the prevalence of thyroid nodules in the BG, it was not statistically significant (p = 0.340). CONCLUSION: BS was associated with a reduction in TV and a nonstatistically significant reduction in TSH. The variations in TV were related to the metabolic markers and inflammatory changes. An increase in the conversion of T4 to T3 with BS was detected, possibly related to inflammatory improvement.


Subject(s)
Bariatric Surgery , Obesity, Morbid , Humans , Thyroid Gland/diagnostic imaging , Thyroid Gland/surgery , Longitudinal Studies , Obesity, Morbid/surgery , Thyrotropin
4.
J Endocrinol ; 259(2)2023 11 01.
Article in English | MEDLINE | ID: mdl-37566237

ABSTRACT

Estrogen deficiency is a well-known hallmark of menopause and is associated with oxidative stress and metabolic dysfunction. Quercetin (Q), a flavonoid found in fruits and vegetables, has demonstrated anti-inflammatory effects in experimental models of metabolic disorders. In this study, we aimed to investigate the effects of quercetin on retroperitoneal white adipose tissue (rWAT) redox homeostasis and systemic metabolic parameters in ovariectomized (OVX) rats. Female Wistar rats at 3 months old were divided into the following experimental groups: sham-operated treated with vehicle (DMSO 10% + PBS - 1 mL/kg); OVX (vehicle treated) and OVX-Q (25 mg/kg) - via oral gavage, daily for 5 weeks. Q did not prevent weight gain but improved glucose tolerance and blood cholesterol profile, and attenuated uterine atrophy in OVX rats. Furthermore, Q had a protective effect on rWAT, once the OVX-Q group presented lower oxidative stress levels, and reduced levels of the pro-inflammatory cytokine tumor necrosis factor alpha, compared to the OVX group. Q improved antioxidant enzyme activities such as superoxide dismutase and catalase and decreased reactive oxygen species production, in OVX-Q rats. It was followed by increased levels of total thiol content and lower lipid peroxidation. Moreover, Q reduced senescent-related genes p16INK4a and p19ARF expression which were higher in the OVX group. In conclusion, quercetin supplementation improved redox homeostasis and reduced senescence-related markers, and inflammation in rWAT, which was reflected in preserved systemic metabolic health parameters in OVX rats. These findings suggest that quercetin may have therapeutic potential for the management of metabolic disorders associated with menopause-induced estrogen deficiency.


Subject(s)
Antioxidants , Quercetin , Rats , Female , Animals , Humans , Rats, Wistar , Quercetin/pharmacology , Antioxidants/pharmacology , Oxidation-Reduction , Estrogens , Adipose Tissue, White , Homeostasis , Ovariectomy
5.
Steroids ; 197: 109247, 2023 09.
Article in English | MEDLINE | ID: mdl-37149242

ABSTRACT

AIM: To investigate the effect of acute treatment with the anabolic steroid (AS) nandrolone decanoate in mitochondrial homeostasis and JAK-STAT3 signaling during the progression of cardiac ischemia/reperfusion injury (IR). METHODS: Male Wistar rats (2 months old) were randomly allocated into four experimental groups: Control (CTRL), IR, AS, and AS + AG490. All animals were euthanized 3 days after a single intramuscular injection of nandrolone at 10 mg/kg (AS and AS + AG490 groups) or vehicle (CTRL and IR groups). Baseline mRNA expression of antioxidant enzymes superoxide dismutase (SOD) 1 and 2, glutathione peroxidase, catalase, and myosin heavy chain (MHC) α and ß were compared between CTRL and AS groups. Isolated hearts were submitted to ex vivo ischemia and reperfusion, except for hearts from the CTRL group. Before the IR protocol, the JAK-STAT3 inhibitor AG490 was perfused in hearts from the AS + AG490 group. Heart samples were collected during reperfusion to investigate the effects on mitochondrial function. Results Antioxidant enzyme mRNA expression was unaffected, whereas the AS group exhibited decreased ß- MHC/α-MHC ratio versus the CTRL group. Compared to the IR group, the AS group exhibited better recovery of post-ischemic left ventricular (LV) end-diastolic pressure and LV-developed pressure levels, while infarct size significantly decreased. Furthermore, mitochondrial production, transmembrane potential, and swelling were improved, whereas ROS formation was decreased versus the IR group. These effects were prevented by the perfusion of JAK-STAT3 inhibitor AG490. CONCLUSION: These findings suggest that acute nandrolone treatment can provide cardioprotection by recruiting the JAK-STAT3 signaling pathway and mitochondrial preservation.


Subject(s)
Myocardial Reperfusion Injury , Nandrolone , Rats , Animals , Male , Antioxidants , Rats, Wistar , Mitochondria/metabolism , RNA, Messenger
6.
Mol Nutr Food Res ; 66(8): e2100514, 2022 04.
Article in English | MEDLINE | ID: mdl-35175665

ABSTRACT

SCOPE: Perinatal maternal obesity and excessive fructose consumption have been associated with liver metabolic diseases. The study investigates whether moderate maternal high-fat diet affects the liver mitochondria responses to fructose intake in adult offspring. METHODS AND RESULTS: Wistar female rats have received a standard diet (mSTD) or high-fat diet (mHFD) (9% and 28.6% fat, respectively), before mating until the end of lactation. Male offspring were fed standard diet from weaning to adulthood and received water or fructose-drinking water (15%) from 120 to 150 days old. Fructose induces liver mitochondrial ultrastructural alterations with higher intensity in mHFD offspring, accompanied by reduced autophagy markers. Isolated mitochondria respirometry shows unaltered ATP-coupled oxygen consumption with increased Atp5f1b mRNA only in mHFD offspring. Fructose increases basal respiration and encoding complex I-III mRNA, only in mSTD offspring. Uncoupled respiration is lower in mHFD mitochondria that are unable to exhibit fructose-induced increase Ucp2 mRNA. Fructose decreases antioxidative defense markers, increases unfolded protein response and insulin resistance only in mHFD offspring without fructose-induced hepatic lipid accumulation. CONCLUSION: Mitochondrial dysfunction and homeostatic disturbances in response to fructose are early events evidencing the higher risk of fructose damage in the liver of adult offspring from dams fed an isocaloric moderate high-fat diet.


Subject(s)
Diet, High-Fat , Prenatal Exposure Delayed Effects , Adult , Adult Children , Animals , Diet, High-Fat/adverse effects , Female , Fructose/adverse effects , Humans , Male , Maternal Nutritional Physiological Phenomena , Mitochondria, Liver/metabolism , Pregnancy , RNA, Messenger , Rats , Rats, Wistar
7.
Endocr Relat Cancer ; 28(7): 505-519, 2021 06 20.
Article in English | MEDLINE | ID: mdl-34010147

ABSTRACT

Breast cancer and thyroid dysfunctions have been associated for decades. Although many studies suggest a biological correlation, the mechanisms linking these two pathologies have not been elucidated. Reactive oxygen species (ROS) can oxidize lipids, proteins, and DNA molecules and may promote tumor initiation. Hence, we aimed at evaluating the mammary redox balance and genomic instability in a model of experimental hypothyroidism. Female Wistar rats were treated with 0.03% methimazole for 7 or 21 days to evaluate ROS generation, antioxidant enzyme activities, and oxidative stress biomarkers, as well as genomic instability. After 7 days, lower catalase, GPX, and DUOX activities were detected in the breast of hypothyroid group compared to the control while the levels of 4-hydroxynonenal (HNE) were higher. In addition, hypothyroid group showed an increase in γH2Ax/H2Ax ratio. Twenty-one days hypothyroid group had increased catalase and SOD activities, without significant differences between groups in the levels of oxidative stress biomarkers and DNA damage. TSH-treated MCF10A cells showed a higher extracellular, intracellular, and mitochondrial ROS production. Additionally, greater DNA damage was observed in these cells, demonstrated by a higher comet tail DNA percentage and increased 53BP1 foci. Finally, we found that TSH treatment was not able to alter cell viability. The Genome Cancer Atlas (TGCA) data showed that high TSHR expression is associated with more invasive breast cancer types. In conclusion, we demonstrate that oxidative stress and DNA damage in breast are early events of experimental hypothyroidism. Moreover, high TSH levels induce oxidative stress and genomic instability in mammary cells.


Subject(s)
Breast Neoplasms , Hypothyroidism , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Biomarkers , Breast Neoplasms/genetics , Catalase/metabolism , DNA Damage , Female , Genomic Instability , Humans , Oxidative Stress , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Thyrotropin
8.
Antioxidants (Basel) ; 10(4)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808211

ABSTRACT

Physical exercise represents a major challenge to whole-body homeostasis, provoking acute and adaptative responses at the cellular and systemic levels. Different sources of reactive oxygen species (ROS) have been described in skeletal muscle (e.g., NADPH oxidases, xanthine oxidase, and mitochondria) and are closely related to the physiological changes induced by physical exercise through the modulation of several signaling pathways. Many signaling pathways that are regulated by exercise-induced ROS generation, such as adenosine monophosphate-activated protein kinase (AMPK), mitogen activated protein kinase (MAPK), nuclear respiratory factor2 (NRF2), and PGC-1α are involved in skeletal muscle responses to physical exercise, such as increased glucose uptake, mitochondriogenesis, and hypertrophy, among others. Most of these adaptations are blunted by antioxidants, revealing the crucial role played by ROS during and after physical exercise. When ROS generation is either insufficient or exacerbated, ROS-mediated signaling is disrupted, as well as physical exercise adaptations. Thus, an understanding the limit between "ROS that can promote beneficial effects" and "ROS that can promote harmful effects" is a challenging question in exercise biology. The identification of new mediators that cause reductive stress and thereby disrupt exercise-stimulated ROS signaling is a trending on this topic and are covered in this current review.

9.
Oxid Med Cell Longev ; 2021: 4593496, 2021.
Article in English | MEDLINE | ID: mdl-33603946

ABSTRACT

Physical exercise is characterized by an increase in physical and metabolic demand in face of physical stress. It is reported that a single exercise session induces physiological responses through redox signaling to increase cellular function and energy support in diverse organs. However, little is known about the effect of a single bout of exercise on the redox homeostasis and cytoprotective gene expression of white adipose tissue (WAT). Thus, we aimed at evaluating the effects of acute aerobic exercise on WAT redox homeostasis, mitochondrial metabolism, and cytoprotective genic response. Male Wistar rats were submitted to a single moderate-high running session (treadmill) and were divided into five groups: control (CTRL, without exercise), and euthanized immediately (0 h), 30 min, 1 hour, or 2 hours after the end of the exercise session. NADPH oxidase activity was higher in 0 h and 30 min groups when compared to CTRL group. Extramitochondrial ROS production was higher in 0 h group in comparison to CTRL and 2 h groups. Mitochondrial respiration in phosphorylative state increased in 0 h group when compared to CTRL, 30 min, 1, and 2 h groups. On the other hand, mitochondrial ATP production was lower in 0 h in comparison to 30 min group, increasing in 1 and 2 h groups when compared to CTRL and 0 h groups. CAT activity was lower in all exercised groups when compared to CTRL. Regarding oxidative stress biomarkers, we observed a decrease in reduced thiol content in 0 h group compared to CTRL and 2 h groups, and higher levels of protein carbonylation in 0 and 30 min groups in comparison to the other groups. The levels returned to basal condition in 2 h group. Furthermore, aerobic exercise increased NRF2, GPX2, HMOX1, SOD1, and CAT mRNA levels. Taken together, our results suggest that one session of aerobic exercise can induce a transient prooxidative state in WAT, followed by an increase in antioxidant and cytoprotective gene expression.


Subject(s)
Adipose Tissue, White/metabolism , Homeostasis , Mitochondria/metabolism , Physical Conditioning, Animal , Adenosine Triphosphate/biosynthesis , Animals , Antioxidants/metabolism , Biomarkers/metabolism , Cell Respiration/genetics , Gene Expression Regulation , Lactic Acid/blood , Male , NADPH Oxidases/metabolism , Oxidation-Reduction , Oxidative Stress/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Wistar , Reactive Oxygen Species/metabolism , Retroperitoneal Space/physiology
10.
Mol Biol Rep ; 47(11): 8645-8656, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33048324

ABSTRACT

This study investigated the therapeutic potential of N-acetylcysteine (NAC) in the treatment of heart failure in female rats. Myocardial infarcted (MI) rats were given NAC (250 mg/kg/day p.o.) during 28 days after surgery (MI + NAC) or vehicle (MI + Placebo), and sham-operated rats received the same treatments (Sham + NAC and Sham + Placebo). Electrocardiographic and echocardiographic analyses were performed in the last week of treatment. Cardiac mRNA levels of types I and II superoxide dismutase (SOD), catalase, types I and III glutathione peroxidase (GPX), nerve growth factor (NGF), ß1-adrenergic receptor (ß1ADR), and type 2 muscarinic receptor (M2R) were assessed. Cardiac levels NADPH oxidase (NOX) activity, total content of reduced thiols, and SOD, GPX, and catalase activity were assessed. Compared to MI + Placebo group, MI + NAC group exhibited decreased NOX activity, increased content of reduced thiols, increased GPX activity, and normalized GPX III mRNA levels (p < 0.05). Heart and lung weights, left ventricular (LV) end-diastolic volume and left atrium/aorta ratio were decreased, while LV posterior wall thickness and ejection fraction were increased in MI + NAC group versus MI + Placebo rats (p < 0.05). Power density of low frequency band was decreased, while power density of high frequency and the root mean square of the successive differences were increased in MI + NAC rats versus MI + Placebo (p < 0.05). These findings indicate that NAC promotes therapeutic effects in the progression of MI-induced heart failure in female rats.


Subject(s)
Acetylcysteine , Antioxidants , Electrocardiography/drug effects , Heart/drug effects , Myocardial Infarction/drug therapy , Acetylcysteine/administration & dosage , Acetylcysteine/pharmacology , Animals , Antioxidants/administration & dosage , Antioxidants/pharmacology , Female , Oxidative Stress/drug effects , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism
11.
Crit Rev Toxicol ; 50(8): 707-723, 2020 09.
Article in English | MEDLINE | ID: mdl-33064037

ABSTRACT

Although sunlight provides several benefits, ultraviolet (UV) radiation plays an important role in the development of various skin damages such as erythema, photoaging, and photocarcinogenesis. Despite cells having endogenous defense systems, damaged DNA may not be efficiently repaired at chronic exposure. In this sense, it is necessary to use artificial defense strategies such as sunscreen formulations. UV filters should scatter, reflect, or absorb solar UV radiation in order to prevent direct or indirect DNA lesions. However, the safety of UV filters is a matter of concern due to several controversies reported in literature, such as endocrine alterations, allergies, increased oxidative stress, phototoxic events, among others. Despite these controversies, the way in which sunscreens are tested is essential to ensure safety. Sunscreen regulation includes mandatory test for phototoxicity, but photogenotoxicity testing is not recommended as a part of the standard photosafety testing program. Although available photobiological tests are still the first approach to assess photosafety, they are limited. Some existing tests do not always provide reliable results, mainly due to limitations regarding the nature of the assessed phototoxic effect, cell UV sensitivity, and the irradiation protocols. These aspects bring queries regarding the safety of sunscreen wide use and suggest the demand for the development of robust and efficient in vitro screening tests to overcome the existing limitations. In this way, Saccharomyces cerevisiae has stood out as a promising model to fill the gaps in photobiology and to complete the mandatory tests enabling a more extensive and robust photosafety assessment.


Subject(s)
Sunscreening Agents/toxicity , DNA Damage , Humans , Oxidative Stress , Skin , Skin Neoplasms , Sunlight , Ultraviolet Rays
12.
Rev Assoc Med Bras (1992) ; 66(2): 210-215, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32428157

ABSTRACT

OBJECTIVES: Lymphomas are a heterogeneous set of malignant neoplasias of lymphoid B and NK/T mature and immature cells at various stages of differentiation. Genetic and molecular biology tools are used to appropriately classify the type and prognosis of the lymphomas, which have implications in therapeutic effectiveness. Among them, the nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) oxidase (NOX5) enzymes have been explored. This study analyzed the expression of NADPH oxidase 5 in lymphoma tissue according to the degree of tumor aggressiveness. METHODS: Slides from 64 patients with lymphoma who had paraffin-embedded tissue available were reviewed by two independent, experienced pathologists. They classified tumors according to the WHO classification (2017). NOX5 expression in tissues was assessed by immunohistochemical staining using a tissue microarray. The assay was interpreted using a scoring system of 0, 1, 2, and 3, for cytoplasmic staining of NOX5 corresponding to negative, weak, intermediate, and strong staining, respectively. We compared the expression of NOX5 in patients with aggressive versus non-aggressive lymphomas. RESULTS: NOX5 expression was positive in 100% (27/27) of aggressive lymphomas and in 19% (7/37) of non-aggressive ones. The seven patients with positive expression of NOX5 presented intermediate staining (2); strong staining (3) was observed only in tissues of aggressive lymphomas, and negative and weak staining (0 and 1) were observed only in non-aggressive lymphomas. CONCLUSIONS: Aggressive lymphomas overexpress NOX5 protein. The higher NOX5 expression in aggressive lymphomas can suggest an involvement of this enzyme on the acquisition of an aggressive phenotype in lymphoid neoplasia.


Subject(s)
Lymphoma/pathology , NADPH Oxidase 5/analysis , Up-Regulation , Humans , Immunohistochemistry , Neoplasm Invasiveness , Paraffin Embedding , Prognosis , Retrospective Studies
13.
Antioxid Redox Signal ; 33(8): 539-541, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32336119

ABSTRACT

Even though physical activity is known to perturb the redox homeostasis and create a pro-oxidative muscular environment, robust evidence has confirmed precise, powerful, and beneficial effects of regular physical activity on health. Physical exercise can activate redox-sensitive intracellular signaling pathways via reactive oxygen species (ROS)-related pathways leading to modification of muscle function through genomic and nongenomic mechanisms. However, ROS-mediated signaling also has deleterious effects on skeletal muscle function, which has been observed in several pathological conditions, such as cancer, obesity, and diabetes, among others. One of the most challenging issues debated on this topic is that of the levels of redox signaling that promote either beneficial or harmful effects to our bodies. This Forum discusses the latest progress in muscle redox signaling with emphasis on muscle physiology and physiopathology. Antioxid. Redox Signal. 33, 539-541.


Subject(s)
Muscle, Skeletal/metabolism , Oxidation-Reduction , Signal Transduction , Animals , Homeostasis , Humans , Muscular Diseases/etiology , Muscular Diseases/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism
14.
Article in English | MEDLINE | ID: mdl-32174127

ABSTRACT

Significance: Exercise-induced reactive oxygen species (ROS) production activates multiple intracellular signaling pathways through genomic and nongenomic mechanisms that are responsible for the beneficial effects of exercise in muscle. Beyond the positive effect of exercise on skeletal muscle cells, other tissues such as white and brown adipose, liver, central nervous system, endothelial, heart, and endocrine organ tissues are also responsive to exercise. Recent Advances: Crosstalk between different cells is essential to achieve homeostasis and to promote the benefits of exercise through paracrine or endocrine signaling. This crosstalk can be mediated by different effectors that include the secretion of metabolites of muscle contraction, myokines, and exosomes. During the past 20 years, it has been demonstrated that contracting muscle cells produce and secrete different classes of myokines, which functionally link muscle with nearly all other cell types. Critical Issues: The redox signaling behind this exercise-induced crosstalk is now being decoded. Many of these widespread beneficial effects of exercise require not only a complex ROS-dependent intramuscular signaling cascade but simultaneously, an integrated network with many remote tissues. Future Directions: Strong evidence suggests that the powerful beneficial effect of regular physical activity for preventing (or treating) a large range of disorders might also rely on ROS-mediated signaling. Within a contracting muscle, ROS signaling may control exosomes and myokines secretion. In remote tissues, exercise generates regular and synchronized ROS waves, creating a transient pro-oxidative environment in many cells. These new concepts integrate exercise, ROS-mediated signaling, and the widespread health benefits of exercise.

15.
Rev. Assoc. Med. Bras. (1992) ; 66(2): 210-215, Feb. 2020. graf
Article in English | Sec. Est. Saúde SP, LILACS | ID: biblio-1136186

ABSTRACT

SUMMARY OBJECTIVES Lymphomas are a heterogeneous set of malignant neoplasias of lymphoid B and NK/T mature and immature cells at various stages of differentiation. Genetic and molecular biology tools are used to appropriately classify the type and prognosis of the lymphomas, which have implications in therapeutic effectiveness. Among them, the nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) oxidase (NOX5) enzymes have been explored. This study analyzed the expression of NADPH oxidase 5 in lymphoma tissue according to the degree of tumor aggressiveness. METHODS Slides from 64 patients with lymphoma who had paraffin-embedded tissue available were reviewed by two independent, experienced pathologists. They classified tumors according to the WHO classification (2017). NOX5 expression in tissues was assessed by immunohistochemical staining using a tissue microarray. The assay was interpreted using a scoring system of 0, 1, 2, and 3, for cytoplasmic staining of NOX5 corresponding to negative, weak, intermediate, and strong staining, respectively. We compared the expression of NOX5 in patients with aggressive versus non-aggressive lymphomas. RESULTS NOX5 expression was positive in 100% (27/27) of aggressive lymphomas and in 19% (7/37) of non-aggressive ones. The seven patients with positive expression of NOX5 presented intermediate staining (2); strong staining (3) was observed only in tissues of aggressive lymphomas, and negative and weak staining (0 and 1) were observed only in non-aggressive lymphomas. CONCLUSIONS Aggressive lymphomas overexpress NOX5 protein. The higher NOX5 expression in aggressive lymphomas can suggest an involvement of this enzyme on the acquisition of an aggressive phenotype in lymphoid neoplasia.


RESUMO OBJETIVOS Os linfomas são um grupo heterogêneo de neoplasias malignas de células linfoides B e NK/T maduras e imaturas em vários estágios de diferenciação. Ferramentas de biologia molecular e genética são usadas para classificar adequadamente o tipo e o prognóstico dos linfomas, os quais têm implicações na eficácia terapêutica. Entre eles, as enzimas nicotinamida adenina dinucleótido fosfato oxidase (NADPH) oxidase (NOX5) foram exploradas. Este estudo analisou a expressão da NADPH oxidase 5 em linfomas de acordo com o grau de agressividade tumoral. MÉTODOS As lâminas de 64 pacientes com linfoma, que tinham tecido embebido em parafina disponível, foram revisadas por dois patologistas experientes independentemente. Eles utilizaram a classificação da OMS (2017). A expressão de NOX5 nos tecidos foi avaliada por coloração imuno-histoquímica utilizando microarray de tecido. O ensaio foi interpretado com um sistema de pontuação de 0, 1, 2 e 3, para coloração citoplasmática de NOX5 correspondente à coloração negativa, fraca, intermediária e forte, respectivamente. Comparamos a expressão de NOX5 em pacientes com linfomas agressivos versus não agressivos. RESULTADOS A expressão de NOX5 foi positiva em 100% (27/27) dos linfomas agressivos e em 19% (7/37) dos linfomas não agressivos. Os sete pacientes com expressão positiva de NOX5 apresentaram coloração intermediária (2); coloração forte (3) foi observada apenas em tecidos de linfomas agressivos, e negativos e fracos (0 e 1) observados apenas em linfomas não agressivos. CONCLUSÕES Linfomas agressivos superexpressam a proteína NOX5. A expressão aumentada de NOX5 em linfomas agressivos pode sugerir um envolvimento dessa enzima na aquisição de um fenótipo agressivo na neoplasia linfoide.


Subject(s)
Humans , Up-Regulation , NADPH Oxidase 5/analysis , Lymphoma/pathology , Prognosis , Immunohistochemistry , Retrospective Studies , Paraffin Embedding , Neoplasm Invasiveness
16.
Mol Nutr Food Res ; 64(3): e1900838, 2020 02.
Article in English | MEDLINE | ID: mdl-31916388

ABSTRACT

SCOPE: Non-alcoholic fatty liver disease (NAFLD) among adolescents has been related to fructose intake. Additionally, maternal high-fat diet (mHFD) increases the offspring susceptibility to NAFLD at adulthood. Here, it is hypothesized that mHFD may exacerbate the fructose impact in adolescent male rat offspring, by changing the response of contributing mechanisms to liver injury. METHODS AND RESULTS: Female Wistar rats receive standard (mSTD: 9% fat) or high-fat diet (mHFD: 29% fat) prior mating throughout pregnancy and lactation. After weaning, offspring receive standard chow and, from the 25th to 45th day, receive water or fructose-drinking water (15%). At 46 days old, fructose groups show increased adiposity, increased serum and hepatic triglycerides, regardless of maternal diet. Fructose aggravates the hepatic imbalance of redox state already exhibited by mHFD offspring. The hepatic activation of cellular repair pathways by fructose, such as unfolded protein response and macroautophagy, is disrupted only in mHFD offspring. Fructose does not change the liver morphology of mSTD offspring. However, it intensifies the liver injury already present in mHFD offspring. CONCLUSION: Fructose intake during adolescence accelerates the emergence of NAFLD observed previously at the adult life of mHFD offspring, and reveals a differentiated hepatic response to metabolic insult, depending on the maternal diet.


Subject(s)
Diet, High-Fat , Fructose/toxicity , Non-alcoholic Fatty Liver Disease/etiology , Aging , Animals , Autophagy , Body Weight , Disease Susceptibility , Endoplasmic Reticulum Stress , Female , Male , Maternal Nutritional Physiological Phenomena , Non-alcoholic Fatty Liver Disease/pathology , Oxidative Stress , Pregnancy , Rats, Wistar , Triglycerides/blood , Unfolded Protein Response
17.
PLoS One ; 14(6): e0218986, 2019.
Article in English | MEDLINE | ID: mdl-31251767

ABSTRACT

In unilateral ureteral obstruction (UUO), both oxidative stress and mitochondrial dysfunction are related to cell death. The aim of this study has been to characterize profiles of enzyme antioxidant activities and mitochondrial functioning of the contralateral (CL) compared to UUO and Sham (false-operated) kidneys of Balb/c mice. Kidneys were resected 14 days after obstruction for immunohistochemical and cortical mitochondrial functioning assays. Antioxidant enzymes activities were investigated in mitochondria and cytosol. Oxygen consumption (QO2) and formation of O2 reactive species (ROS) were assessed with pyruvate plus malate or succinate as the respiratory substrates. QO2 decreased in CL and UUO in all states using substrates for complex II, whereas it was affected only in UUO when substrates for complex I were used. Progressive decrease in mitochondrial ROS formation-in the forward and reverse pathway at complex I-correlates well with the inhibition of QO2 and, therefore, with decreased electron transfer at the level of complexes upstream of cytochrome c oxidase. CL and UUO transmembrane potential responses to ADP were impaired with succinate. Intense Ca2+-induced swelling was elicited in CL and UUO mitochondria. Important and selective differences exist in CL antioxidant enzymes with respect to either Sham or UUO kidneys: CL kidneys had increased mitochondrial glutathione peroxidase and cytosolic catalase activities, indicative of compensatory responses in the face of an early altered ROS homeostasis (as detected by 4-hydroxynonenal), and of a significant tendency to apoptosis. In CL and UUO, upregulation of nuclear (erythroid-derived 2)-like 2 transcription factor (Nrf2), as well as of cytoplasmic and nuclear Kelch-like ECH-associated protein 1 (Keap1) in opposition to decreased heme oxygenase-1 (HO-1), suggest impairment of the Nrf2/Keap1/HO-1 system. It is concluded that chronic obstruction impairs mitochondrial function in CL and UUO, preferentially affecting complex II.


Subject(s)
Kidney/cytology , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Ureteral Obstruction/surgery , Animals , Calcium Signaling , Catalase/metabolism , Disease Models, Animal , Glutathione Peroxidase/metabolism , Homeostasis , Kidney/metabolism , Kidney/surgery , Male , Mice , Oxidation-Reduction , Up-Regulation , Ureteral Obstruction/etiology , Ureteral Obstruction/metabolism
18.
Oxid Med Cell Longev ; 2019: 2514312, 2019.
Article in English | MEDLINE | ID: mdl-30728883

ABSTRACT

Reactive oxygen species (ROS) are the most critical class of free radicals or reactive metabolites produced by all living organisms. ROS regulate several cellular functions through redox-dependent mechanisms, including proliferation, differentiation, hormone synthesis, and stress defense response. However, ROS overproduction or lack of appropriate detoxification is harmful to cells and can be linked to the development of several diseases, such as cancer. Oxidative damage in cellular components, especially in DNA, can promote the malignant transformation that has already been described in thyroid tissue. In thyrocyte physiology, NADPH oxidase enzymes produce large amounts of ROS that are necessary for hormone biosynthesis and might contribute to the high spontaneous mutation rate found in this tissue. Thyroid cancer is the most common endocrine malignancy, and its incidence is significantly higher in women than in men. Several lines of evidence suggest the sex hormone estrogen as a risk factor for thyroid cancer development. Estrogen in turn, besides being a potent growth factor for both normal and tumor thyroid cells, regulates different mechanisms of ROS generation. Our group demonstrated that the thyroid gland of adult female rats exhibits higher hydrogen peroxide (H2O2) production and lower enzymatic antioxidant defense in comparison with male glands. In this review, we discuss the possible involvement of thyroid redox homeostasis and estrogen in the development of thyroid carcinogenesis.


Subject(s)
Carcinogenesis/metabolism , Estrogens/metabolism , Homeostasis/physiology , Reactive Oxygen Species/metabolism , Humans , Oxidation-Reduction
19.
Respir Physiol Neurobiol ; 259: 30-36, 2019 01.
Article in English | MEDLINE | ID: mdl-29997055

ABSTRACT

Acute lung injury (ALI) remains a major cause of mortality. In lipopolysaccharide (LPS)-stimulated macrophages, eugenol reduces cyclooxygenase-2 expression, NF-κB activation, and inflammatory mediators. We examined the anti-inflammatory and anti-oxidative action of eugenol in an in vivo model of LPS-induced lung injury. Lung mechanics and histology were analyzed in mice 24 h after LPS exposure, with and without eugenol treatment at different doses. Additional animals, submited to the same protocol, were treated with eugenol at 150 mg/kg to determine its effect on inflammatory cytokines (ELISA) and oxidative markers. LPS-induced lung functional and histological changes were significantly improved by eugenol, in a dose-dependent way. Furthermore, eugenol (150 mg/kg) was able to inhibit the release of inflammatory cytokines (TNF-α, IL-1ß and IL-6), NADPH oxidase activity, as well as antioxidant enzymes activity (superoxide dismutase, catalase and glutathione peroxidase). Finally, eugenol reduced LPS-induced protein oxidation. In conclusion, eugenol improved in vivo LPS-induced ALI through both anti-inflammatory and anti-oxidative effects, avoiding damage to lung structure.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Eugenol/therapeutic use , Inflammation/drug therapy , Inflammation/etiology , Lung Injury/complications , Oxidative Stress/drug effects , Animals , Antioxidants/metabolism , Cytokines/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Lipopolysaccharides/toxicity , Lung Injury/chemically induced , Male , Mice , Mice, Inbred BALB C , NADPH Oxidases/metabolism , Pulmonary Medicine/methods , Statistics, Nonparametric
20.
Appl Physiol Nutr Metab ; 44(7): 720-726, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30517031

ABSTRACT

The development of obesity-related metabolic disorders is more evident in male in comparison with female subjects, but the mechanisms are unknown. Several studies have shown that oxidative stress is involved in the pathophysiology of obesity, but the majority of these studies were performed with male animals. The aim of this study was to evaluate the sex-related differences in subcutaneous adipose tissue redox homeostasis and inflammation of rats chronically fed a high-fat diet. NADPH oxidase (NOX), glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase activities were evaluated in the subcutaneous adipose tissue (SC) of adult male and female rats fed either a standard chow (SCD) or a high-fat diet (HFD) for 11 weeks. NOX2 and NOX4 messenger RNA (mRNA) levels, total reduced thiols, interleukin (IL)-1ß, tumor necrosis factor α (TNF-α), and IL-6 were also determined. Higher antioxidant enzyme activities and total reduced thiol levels were detected in SC of control male compared with female rats. Chronic HFD administration increased NOX activity and NOX2 and NOX4 mRNA levels and decreased SOD and GPx activities only in male animals. IL-1ß, TNF-α, and IL-6 levels, as well as Adgre1, CD11b, and CD68 mRNA levels, were also higher in SC of males after HFD feeding. In SC of females, catalase activity was higher after HFD feeding. Taken together, our results show that redox homeostasis and inflammation of SC is sexually dimorphic. Furthermore, males show higher oxidative stress in SC after 11 weeks of HFD feeding owing to both increased reactive oxygen species (ROS) production through NOX2 and NOX4 and decreased ROS detoxification.


Subject(s)
Diet, High-Fat/adverse effects , Homeostasis/physiology , Inflammation/metabolism , Subcutaneous Fat/metabolism , Animals , Antioxidants/metabolism , Biomarkers , Cytokines/blood , Female , Male , NADPH Oxidase 2/metabolism , NADPH Oxidase 4/metabolism , Oxidation-Reduction , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Sex Characteristics , Subcutaneous Fat/cytology , Sulfhydryl Compounds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...