Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37628866

ABSTRACT

Friedreich's ataxia (FRDA) is a rare monogenic disease characterized by multisystem, slowly progressive degeneration. Because of the genetic defect in a non-coding region of FXN gene, FRDA cells exhibit severe deficit of frataxin protein levels. Hence, FRDA pathophysiology is characterized by a plethora of metabolic disruptions related to iron metabolism, mitochondrial homeostasis and oxidative stress. Importantly, an impairment of the antioxidant defences exacerbates the oxidative damage. This appears closely associated with the disablement of key antioxidant proteins, such as the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and the mitochondrial superoxide dismutase (MnSOD). The cytokine interferon gamma (IFN-γ) has been shown to increase frataxin expression in FRDA cells and to improve functional deficits in FRDA mice. Currently, IFN-γ represents a potential therapy under clinical evaluation in FRDA patients. Here, we show that IFN-γ induces a rapid expression of Nrf2 and MnSOD in different cell types, including FRDA patient-derived fibroblasts. Our data indicate that IFN-γ signals two separate pathways to enhance Nrf2 and MnSOD levels in FRDA fibroblasts. MnSOD expression increased through an early transcriptional regulation, whereas the levels of Nrf2 are induced by a post-transcriptional mechanism. We demonstrate that the treatment of FRDA fibroblasts with IFN-γ stimulates a non-canonical Nrf2 activation pathway through p21 and potentiates antioxidant responses under exposure to hydrogen peroxide. Moreover, IFN-γ significantly reduced the sensitivity to hydrogen peroxide-induced cell death in FRDA fibroblasts. Collectively, these results indicate the presence of multiple pathways triggered by IFN-γ with therapeutic relevance to FRDA.


Subject(s)
Friedreich Ataxia , Interferon-gamma , Animals , Mice , Interferon-gamma/pharmacology , NF-E2-Related Factor 2/genetics , Antioxidants/pharmacology , Friedreich Ataxia/genetics , Hydrogen Peroxide , Superoxide Dismutase
2.
Int J Mol Sci ; 23(14)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35887162

ABSTRACT

While blood-brain barrier (BBB) dysfunction has been described in neurological disorders, including Huntington's disease (HD), it is not known if endothelial cells themselves are functionally compromised when promoting BBB dysfunction. Furthermore, the underlying mechanisms of BBB dysfunction remain elusive given the limitations with mouse models and post mortem tissue to identify primary deficits. We established models of BBB and undertook a transcriptome and functional analysis of human induced pluripotent stem cell (iPSC)-derived brain-like microvascular endothelial cells (iBMEC) from HD patients or unaffected controls. We demonstrated that HD-iBMECs have abnormalities in barrier properties, as well as in specific BBB functions such as receptor-mediated transcytosis.


Subject(s)
Huntington Disease , Induced Pluripotent Stem Cells , Animals , Blood-Brain Barrier/physiology , Cell Differentiation , Endothelial Cells/physiology , Humans , Induced Pluripotent Stem Cells/physiology , Mice
3.
Hum Mol Genet ; 29(3): 471-482, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31943004

ABSTRACT

Frataxin deficiency, responsible for Friedreich's ataxia (FRDA), is crucial for cell survival since it critically affects viability of neurons, pancreatic beta cells and cardiomyocytes. In FRDA, the heart is frequently affected with typical manifestation of hypertrophic cardiomyopathy, which can progress to heart failure and cause premature death. A microarray analysis performed on FRDA patient's lymphoblastoid cells stably reconstituted with frataxin, indicated HS-1-associated protein X-1 (HAX-1) as the most significantly upregulated transcript (FC = +2, P < 0.0006). quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) and western blot analysis performed on (I) HEK293 stably transfected with empty vector compared to wild-type frataxin and (II) lymphoblasts from FRDA patients show that low frataxin mRNA and protein expression correspond to reduced levels of HAX-1. Frataxin overexpression and silencing were also performed in the AC16 human cardiomyocyte cell line. HAX-1 protein levels are indeed regulated through frataxin modulation. Moreover, correlation between frataxin and HAX-1 was further evaluated in peripheral blood mononuclear cells (PBMCs) from FRDA patients and from non-related healthy controls. A regression model for frataxin which included HAX-1, group membership and group* HAX-1 interaction revealed that frataxin and HAX-1 are associated both at mRNA and protein levels. Additionally, a linked expression of FXN, HAX-1 and antioxidant defence proteins MnSOD and Nrf2 was observed both in PBMCs and AC16 cardiomyocytes. Our results suggest that HAX-1 could be considered as a potential biomarker of cardiac disease in FRDA and the evaluation of its expression might provide insights into its pathogenesis as well as improving risk stratification strategies.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cardiomyopathy, Hypertrophic/pathology , Friedreich Ataxia/complications , Gene Expression Regulation , Heart Failure/pathology , Iron-Binding Proteins/metabolism , Myocytes, Cardiac/pathology , Adaptor Proteins, Signal Transducing/genetics , Adult , Aged , Cardiomyopathy, Hypertrophic/etiology , Cardiomyopathy, Hypertrophic/metabolism , Female , Heart Failure/etiology , Heart Failure/metabolism , Humans , Iron-Binding Proteins/genetics , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Male , Middle Aged , Myocytes, Cardiac/metabolism , Young Adult , Frataxin
5.
Nucleic Acids Res ; 47(20): 10728-10743, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31584077

ABSTRACT

Friedreich's ataxia (FRDA) is an untreatable disorder with neuro- and cardio-degenerative progression. This monogenic disease is caused by the hyper-expansion of naturally occurring GAA repeats in the first intron of the FXN gene, encoding for frataxin, a protein implicated in the biogenesis of iron-sulfur clusters. As the genetic defect interferes with FXN transcription, FRDA patients express a normal frataxin protein but at insufficient levels. Thus, current therapeutic strategies are mostly aimed to restore physiological FXN expression. We have previously described SINEUPs, natural and synthetic antisense long non-coding RNAs, which promote translation of partially overlapping mRNAs through the activity of an embedded SINEB2 domain. Here, by in vitro screening, we have identified a number of SINEUPs targeting human FXN mRNA and capable to up-regulate frataxin protein to physiological amounts acting at the post-transcriptional level. Furthermore, FXN-specific SINEUPs promote the recovery of disease-associated mitochondrial aconitase defects in FRDA-derived cells. In summary, we provide evidence that SINEUPs may be the first gene-specific therapeutic approach to activate FXN translation in FRDA and, more broadly, a novel scalable platform to develop new RNA-based therapies for haploinsufficient diseases.


Subject(s)
Friedreich Ataxia/genetics , Gene Expression Regulation , Iron-Binding Proteins/genetics , Models, Biological , RNA, Untranslated/metabolism , Aconitate Hydratase/metabolism , Cell Line , Fibroblasts/metabolism , Humans , Lymphocytes/metabolism , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Untranslated/genetics , Frataxin
6.
Mov Disord ; 34(3): 323-334, 2019 03.
Article in English | MEDLINE | ID: mdl-30624801

ABSTRACT

BACKGROUND: Friedreich's ataxia is an autosomal-recessive cerebellar ataxia caused by mutation of the frataxin gene, resulting in decreased frataxin expression, mitochondrial dysfunction, and oxidative stress. Currently, no treatment is available for Friedreich's ataxia patients. Given that levels of residual frataxin critically affect disease severity, the main goal of a specific therapy for Friedreich's ataxia is to increase frataxin levels. OBJECTIVES: With the aim to accelerate the development of a new therapy for Friedreich's ataxia, we took a drug repositioning approach to identify market-available drugs able to increase frataxin levels. METHODS: Using a cell-based reporter assay to monitor variation in frataxin amount, we performed a high-throughput screening of a library containing 853 U.S. Food and Drug Administration-approved drugs. RESULTS: Among the potentially interesting candidates isolated from the screening, we focused our attention on etravirine, an antiviral drug currently in use as an anti-human immunodeficiency virus therapy. Here, we show that etravirine can promote a significant increase in frataxin levels in cells derived from Friedreich's ataxia patients, by enhancing frataxin messenger RNA translation. Importantly, frataxin accumulation in treated patient cell lines is comparable to frataxin levels in unaffected carrier cells, suggesting that etravirine could be therapeutically relevant. Indeed, etravirine treatment restores the activity of the iron-sulphur cluster containing enzyme aconitase and confers resistance to oxidative stress in cells derived from Friedreich's ataxia patients. CONCLUSIONS: Considering its excellent safety profile along with its ability to increase frataxin levels and correct some of the disease-related defects, etravirine represents a promising candidate as a therapeutic for Friedreich's ataxia. © 2019 International Parkinson and Movement Disorder Society.


Subject(s)
Friedreich Ataxia/drug therapy , Iron-Binding Proteins/metabolism , Pyridazines/therapeutic use , Cell Line , Drug Evaluation, Preclinical , Drug Repositioning , Friedreich Ataxia/genetics , Friedreich Ataxia/metabolism , Humans , Iron-Binding Proteins/genetics , Nitriles , Pyrimidines , Frataxin
7.
Cell Rep ; 18(8): 2007-2017, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28228265

ABSTRACT

Friedreich ataxia (FRDA) is a severe genetic neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin. To date, there is no therapy to treat this condition. The amount of residual frataxin critically affects the severity of the disease; thus, attempts to restore physiological frataxin levels are considered therapeutically relevant. Frataxin levels are controlled by the ubiquitin-proteasome system; therefore, inhibition of the frataxin E3 ligase may represent a strategy to achieve an increase in frataxin levels. Here, we report the identification of the RING E3 ligase RNF126 as the enzyme that specifically mediates frataxin ubiquitination and targets it for degradation. RNF126 interacts with frataxin and promotes its ubiquitination in a catalytic activity-dependent manner, both in vivo and in vitro. Most importantly, RNF126 depletion results in frataxin accumulation in cells derived from FRDA patients, highlighting the relevance of RNF126 as a new therapeutic target for Friedreich ataxia.


Subject(s)
Friedreich Ataxia/metabolism , Iron-Binding Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Ubiquitination/physiology , Catalysis , Cell Line , HEK293 Cells , Humans , Mitochondrial Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Frataxin
8.
Neurol Sci ; 37(3): 361-4, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26621361

ABSTRACT

Friedreich's ataxia is an autosomal recessive progressive degenerative disorder caused by deficiency of the protein frataxin. The most common genetic cause is a homozygotic expansion of GAA triplets within intron 1 of the frataxin gene leading to impaired transcription. Preclinical in vivo and in vitro studies have shown that interferon gamma (IFNγ) is able to up-regulate the expression of frataxin gene in multiple cell types. We designed a phase IIa clinical trial, the first in Italy, aimed at assessing both safety and tolerability of IFNγ in Friedreich's patients and ability to increase frataxin levels in peripheral blood mononuclear cells. Nine patients (6 female and 3 males aged 21-38 years) with genetically confirmed disease were given 3 subcutaneous escalating doses (100, 150 and 200 µg) of IFNγ (human recombinant interferon 1 b gamma, trade name IMUKIN(®)), over 4 weeks. The primary end-point was the assessment of the safety and tolerability of IFNγ by means of standard clinical and hematological criteria. The secondary end-point was the detection of changes of frataxin levels in peripheral blood mononuclear cells after each single escalating dose of the drug. IFNγ was generally well tolerated, the main adverse event was hyperthermia/fever. Although, increases in frataxin levels could be detected in a minority of patients, these changes were not significant. A large phase III multicenter, randomized clinical trial with IFNγ in Friedreich's ataxia patients is currently ongoing. This study is expected to conclusively address the clinical efficacy of IFNγ therapy in patients with Friedreich's ataxia.


Subject(s)
Friedreich Ataxia/drug therapy , Interferon-gamma/therapeutic use , Neuroprotective Agents/therapeutic use , Adult , Blood Chemical Analysis , Drug Administration Schedule , Female , Friedreich Ataxia/blood , Humans , Interferon-gamma/adverse effects , Iron-Binding Proteins/blood , Italy , Male , Neuroprotective Agents/adverse effects , Recombinant Proteins/adverse effects , Recombinant Proteins/therapeutic use , Treatment Outcome , Young Adult , Frataxin
9.
Front Mol Neurosci ; 8: 66, 2015.
Article in English | MEDLINE | ID: mdl-26635519

ABSTRACT

Reduced levels of frataxin, an essential mitochondrial protein involved in the regulation of iron-sulfur cluster biogenesis, are responsible for the recessive neurodegenerative Friedreich Ataxia (FRDA). Expansion of a GAA triplet in the first intron of the FRDA is essential for disease development which causes partial silencing of frataxin. In the vast majority of cases, patients are homozygotes for the expansion, but a small number of FRDA patients are heterozygotes for expansion and point mutations in the frataxin coding frame. In this study, we analyze the effects of a point mutation G137V. The patient P94-2, with a history of alcohol and drug abuse, showed a FRDA onset at the border between the classic and late onset phenotype. We applied a combination of biophysical and biochemical methods to characterize its effects on the structure, folding and activity of frataxin. Our study reveals no impairment of the structure or activity of the protein but a reduced folding stability. We suggest that the mutation causes misfolding of the native chain with consequent reduction of the protein concentration in the patient and discuss the possible mechanism of disease.

10.
Hum Mol Genet ; 24(15): 4296-305, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-25948553

ABSTRACT

Defective expression of frataxin is responsible for the inherited, progressive degenerative disease Friedreich's Ataxia (FRDA). There is currently no effective approved treatment for FRDA and patients die prematurely. Defective frataxin expression causes critical metabolic changes, including redox imbalance and ATP deficiency. As these alterations are known to regulate the tyrosine kinase Src, we investigated whether Src might in turn affect frataxin expression. We found that frataxin can be phosphorylated by Src. Phosphorylation occurs primarily on Y118 and promotes frataxin ubiquitination, a signal for degradation. Accordingly, Src inhibitors induce accumulation of frataxin but are ineffective on a non-phosphorylatable frataxin-Y118F mutant. Importantly, all the Src inhibitors tested, some of them already in the clinic, increase frataxin expression and rescue the aconitase defect in frataxin-deficient cells derived from FRDA patients. Thus, Src inhibitors emerge as a new class of drugs able to promote frataxin accumulation, suggesting their possible use as therapeutics in FRDA.


Subject(s)
Friedreich Ataxia/genetics , Iron-Binding Proteins/biosynthesis , src-Family Kinases/genetics , Adenosine Triphosphate/deficiency , Adenosine Triphosphate/genetics , Enzyme Inhibitors/pharmacology , Friedreich Ataxia/drug therapy , Friedreich Ataxia/pathology , Gene Expression Regulation/drug effects , Humans , Iron-Binding Proteins/genetics , Oxidation-Reduction , Ubiquitination/genetics , src-Family Kinases/antagonists & inhibitors , src-Family Kinases/metabolism , Frataxin
11.
Neurobiol Dis ; 75: 91-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25549872

ABSTRACT

Friedreich ataxia is an inherited neurodegenerative disease that leads to progressive disability. There is currently no effective treatment and patients die prematurely. The underlying genetic defect leads to reduced expression of the mitochondrial protein frataxin. Frataxin insufficiency causes mitochondrial dysfunction and ultimately cell death, particularly in peripheral sensory ganglia. There is an inverse correlation between the amount of residual frataxin and the severity of disease progression; therefore, therapeutic approaches aiming at increasing frataxin levels are expected to improve patients' conditions. We previously discovered that a significant amount of frataxin precursor is degraded by the ubiquitin/proteasome system before its functional mitochondrial maturation. We also provided evidence for the therapeutic potential of small molecules that increase frataxin levels by docking on the frataxin ubiquitination site, thus preventing frataxin ubiquitination and degradation. We called these compounds ubiquitin-competing molecules (UCM). By extending our search for effective UCM, we identified a set of new and more potent compounds that more efficiently promote frataxin accumulation. Here we show that these compounds directly interact with frataxin and prevent its ubiquitination. Interestingly, these UCM are not effective on the ubiquitin-resistant frataxin mutant, indicating their specific action on preventing frataxin ubiquitination. Most importantly, these compounds are able to promote frataxin accumulation and aconitase rescue in cells derived from patients, strongly supporting their therapeutic potential.


Subject(s)
Aconitate Hydratase/metabolism , Friedreich Ataxia/drug therapy , Friedreich Ataxia/metabolism , Iron-Binding Proteins/metabolism , Neuroprotective Agents/pharmacology , Binding Sites , Cell Line , Drug Design , Fluorescence , HEK293 Cells , Humans , Immunoblotting , Iron-Binding Proteins/chemistry , Iron-Binding Proteins/genetics , Molecular Docking Simulation , Mutation , Neuroprotective Agents/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Ubiquitination/drug effects , Frataxin
12.
Hum Mol Genet ; 21(13): 2855-61, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22447512

ABSTRACT

Friedreich's ataxia (FRDA) is the most common hereditary ataxia, affecting ∼3 in 100 000 individuals in Caucasian populations. It is caused by intronic GAA repeat expansions that hinder the expression of the FXN gene, resulting in defective levels of the mitochondrial protein frataxin. Sensory neurons in dorsal root ganglia (DRG) are particularly damaged by frataxin deficiency. There is no specific therapy for FRDA. Here, we show that frataxin levels can be upregulated by interferon gamma (IFNγ) in a variety of cell types, including primary cells derived from FRDA patients. IFNγ appears to act largely through a transcriptional mechanism on the FXN gene. Importantly, in vivo treatment with IFNγ increases frataxin expression in DRG neurons, prevents their pathological changes and ameliorates the sensorimotor performance in FRDA mice. These results disclose new roles for IFNγ in cellular metabolism and have direct implications for the treatment of FRDA.


Subject(s)
Friedreich Ataxia/genetics , Friedreich Ataxia/metabolism , Interferon-gamma/pharmacology , Interferon-gamma/physiology , Iron-Binding Proteins/biosynthesis , Animals , Cells, Cultured , Disease Models, Animal , Friedreich Ataxia/drug therapy , Friedreich Ataxia/pathology , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , HeLa Cells , Humans , Interferon-gamma/therapeutic use , Iron-Binding Proteins/genetics , Mice , Mice, Transgenic , Mitochondria/metabolism , Transcription, Genetic , Transcriptional Activation , Frataxin
13.
Hum Mol Genet ; 20(7): 1253-61, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21216878

ABSTRACT

Friedreich's ataxia (FRDA) is a devastating orphan disease, with no specific treatment. The disease is caused by reduced expression of the protein frataxin, which results in mitochondrial defects and oxidative damage. Levels of residual frataxin critically affect onset and progression of the disease. Understanding the molecular mechanisms that regulate frataxin stability and degradation may, therefore, be exploited for the design of effective therapeutics. Here we show that frataxin is degraded by the ubiquitin-proteasome system and that K(147) is the critical residue responsible for frataxin ubiquitination and degradation. Accordingly, a K(147)R substitution generates a more stable frataxin. We then disclose a set of lead compounds, computationally selected to target the molecular cleft harboring K(147), that can prevent frataxin ubiquitination and degradation, and increase frataxin levels in cells derived from FRDA patients. Moreover, treatment with these compounds induces substantial recovery of aconitase activity and adenosine-5'-triphosphate levels in FRDA cells. Thus, we provide evidence for the therapeutic potential of directly interfering with the frataxin degradation pathway.


Subject(s)
Friedreich Ataxia/metabolism , Iron-Binding Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Ubiquitination , Aconitate Hydratase/genetics , Aconitate Hydratase/metabolism , Adenosine Triphosphate/genetics , Adenosine Triphosphate/metabolism , Amino Acid Substitution , Friedreich Ataxia/drug therapy , Friedreich Ataxia/genetics , HEK293 Cells , Humans , Iron-Binding Proteins/genetics , Mutation, Missense , Proteasome Endopeptidase Complex/genetics , Ubiquitin/genetics , Frataxin
SELECTION OF CITATIONS
SEARCH DETAIL
...