Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Commun ; 11(1): 4659, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32938936

ABSTRACT

The αvß6 integrin plays a key role in the activation of transforming growth factor-ß (TGFß), a pro-fibrotic mediator that is pivotal to the development of idiopathic pulmonary fibrosis (IPF). We identified a selective small molecule αvß6 RGD-mimetic, GSK3008348, and profiled it in a range of disease relevant pre-clinical systems. To understand the relationship between target engagement and inhibition of fibrosis, we measured pharmacodynamic and disease-related end points. Here, we report, GSK3008348 binds to αvß6 with high affinity in human IPF lung and reduces downstream pro-fibrotic TGFß signaling to normal levels. In human lung epithelial cells, GSK3008348 induces rapid internalization and lysosomal degradation of the αvß6 integrin. In the murine bleomycin-induced lung fibrosis model, GSK3008348 engages αvß6, induces prolonged inhibition of TGFß signaling and reduces lung collagen deposition and serum C3M, a marker of IPF disease progression. These studies highlight the potential of inhaled GSK3008348 as an anti-fibrotic therapy.


Subject(s)
Butyrates/pharmacology , Idiopathic Pulmonary Fibrosis/drug therapy , Integrins/antagonists & inhibitors , Naphthyridines/pharmacology , Pyrazoles/pharmacology , Pyrrolidines/pharmacology , Administration, Inhalation , Animals , Antigens, Neoplasm/metabolism , Bleomycin/toxicity , Butyrates/administration & dosage , Butyrates/metabolism , Butyrates/pharmacokinetics , Collagen/metabolism , Disease Models, Animal , Epithelial Cells/drug effects , Humans , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/pathology , Integrins/metabolism , Male , Mice, Inbred C57BL , Molecular Docking Simulation , Naphthyridines/administration & dosage , Naphthyridines/metabolism , Naphthyridines/pharmacokinetics , Pyrazoles/administration & dosage , Pyrazoles/metabolism , Pyrazoles/pharmacokinetics , Pyrrolidines/administration & dosage , Pyrrolidines/metabolism , Pyrrolidines/pharmacokinetics , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Tomography, Emission-Computed, Single-Photon , Transforming Growth Factor beta/metabolism , Translational Research, Biomedical
3.
Sci Signal ; 12(582)2019 05 21.
Article in English | MEDLINE | ID: mdl-31113850

ABSTRACT

The differentiation of fibroblasts into a transient population of highly activated, extracellular matrix (ECM)-producing myofibroblasts at sites of tissue injury is critical for normal tissue repair. Excessive myofibroblast accumulation and persistence, often as a result of a failure to undergo apoptosis when tissue repair is complete, lead to pathological fibrosis and are also features of the stromal response in cancer. Myofibroblast differentiation is accompanied by changes in cellular metabolism, including increased glycolysis, to meet the biosynthetic demands of enhanced ECM production. Here, we showed that transforming growth factor-ß1 (TGF-ß1), the key pro-fibrotic cytokine implicated in multiple fibrotic conditions, increased the production of activating transcription factor 4 (ATF4), the transcriptional master regulator of amino acid metabolism, to supply glucose-derived glycine to meet the amino acid requirements associated with enhanced collagen production in response to myofibroblast differentiation. We further delineated the signaling pathways involved and showed that TGF-ß1-induced ATF4 production depended on cooperation between canonical TGF-ß1 signaling through Smad3 and activation of mechanistic target of rapamycin complex 1 (mTORC1) and its downstream target eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). ATF4, in turn, promoted the transcription of genes encoding enzymes of the de novo serine-glycine biosynthetic pathway and glucose transporter 1 (GLUT1). Our findings suggest that targeting the TGF-ß1-mTORC1-ATF4 axis may represent a novel therapeutic strategy for interfering with myofibroblast function in fibrosis and potentially in other conditions, including cancer.


Subject(s)
Activating Transcription Factor 4/metabolism , Collagen/biosynthesis , Glycine/biosynthesis , Mechanistic Target of Rapamycin Complex 1/metabolism , Serine/biosynthesis , Transforming Growth Factor beta1/pharmacology , Activating Transcription Factor 4/genetics , Biosynthetic Pathways/drug effects , Biosynthetic Pathways/genetics , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cells, Cultured , Extracellular Matrix/metabolism , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Gene Expression Regulation/drug effects , Humans , Mechanistic Target of Rapamycin Complex 1/genetics , Myofibroblasts/cytology , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Signal Transduction/drug effects
4.
Nat Commun ; 10(1): 6, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30602778

ABSTRACT

Myofibroblasts are the key effector cells responsible for excessive extracellular matrix deposition in multiple fibrotic conditions, including idiopathic pulmonary fibrosis (IPF). The PI3K/Akt/mTOR axis has been implicated in fibrosis, with pan-PI3K/mTOR inhibition currently under clinical evaluation in IPF. Here we demonstrate that rapamycin-insensitive mTORC1 signaling via 4E-BP1 is a critical pathway for TGF-ß1 stimulated collagen synthesis in human lung fibroblasts, whereas canonical PI3K/Akt signaling is not required. The importance of mTORC1 signaling was confirmed by CRISPR-Cas9 gene editing in normal and IPF fibroblasts, as well as in lung cancer-associated fibroblasts, dermal fibroblasts and hepatic stellate cells. The inhibitory effect of ATP-competitive mTOR inhibition extended to other matrisome proteins implicated in the development of fibrosis and human disease relevance was demonstrated in live precision-cut IPF lung slices. Our data demonstrate that the mTORC1/4E-BP1 axis represents a critical signaling node during fibrogenesis with potential implications for the development of novel anti-fibrotic strategies.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Collagen/biosynthesis , Fibroblasts/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Phosphoproteins/metabolism , Transforming Growth Factor beta1/metabolism , Cell Cycle Proteins , Cell Line , Humans , Idiopathic Pulmonary Fibrosis/etiology , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Sirolimus , TOR Serine-Threonine Kinases/metabolism
5.
PLoS One ; 8(12): e83317, 2013.
Article in English | MEDLINE | ID: mdl-24340095

ABSTRACT

Urotensin II (UII) concentrations are raised both in humans with hypertension and in spontaneously hypertensive rats (SHR). Since the urotensin system acts to regulate glomerular filtration in the kidney it may play a greater role in the pre-hypertensive SHR in which renal dysfunction is known to precede the onset of severe hypertension. This study aimed to determine the renal actions and expression of the urotensin system in the young SHR. Intravenous rat UII (6 pmol. min(-1). 100 g body weight(-1)) had no significant effect on GFR; however urotensin-related peptide (URP) reduced GFR (P<0.05) in 4-5 week old SHR. Administration of the UT antagonist SB-706375 evoked marked increases in GFR (baseline 0.38 ± 0.07 vs antagonist 0.76 ± 0.05 ml. min(-1). 100 g body weight(-1), P<0.05), urine flow and sodium excretion (baseline 2.5 ± 0.4 vs antagonist 9.1 ± 2.1 µmol. min(-1). 100 g body weight(-1), P<0.05) in the SHR. Normotensive Wistar-Kyoto rats showed little response to UT antagonism. Quantitative RT-PCR showed that neither UII nor UT mRNA expression differed between the kidneys of young SHR and WKY rats; however expression of URP was 4-fold higher in the SHR kidney. Renal transcriptional up-regulation indicates that URP is the major UT ligand in young SHR and WKY rats. Enhanced tonic UT activation may contribute to known renal dysfunction in pre-hypertensive SHR.


Subject(s)
Hypertension/blood , Up-Regulation , Urotensins/physiology , Animals , Gene Expression Regulation , Glomerular Filtration Rate , Hypertension/physiopathology , Hypertension/urine , Kidney/physiopathology , Male , Peptide Hormones/blood , Pyrrolidines/administration & dosage , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Reverse Transcriptase Polymerase Chain Reaction , Sulfonamides/administration & dosage , Urotensins/blood
6.
Eur Respir J ; 42(6): 1633-45, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23520313

ABSTRACT

Research into the pathogenesis underlying the development of idiopathic pulmonary fibrosis is hampered by a repertoire of animal models that fail to recapitulate all the features of the human disease. Better use and understanding of what the animal models represent may improve clinical predictability. We interrogated ex vivo micro-computed tomography (CT) as a novel end-point measure in the mouse model of bleomycin-induced lung fibrosis (BILF), and to evaluate a therapeutic dosing regimen for preclinical drug evaluation. A detailed characterisation of BILF was performed using standard end-point measures (lung hydroxyproline and histology). High resolution micro-CT (∼13.7 µm voxel size) was evaluated for quantifying the extent and severity of lung fibrosis. The period from 14 to 28 days following bleomycin instillation represents progression of established fibrosis. A therapeutic dosing regimen during this period was validated using a transforming growth factor-ß receptor-1 kinase inhibitor, and micro-CT provided a highly sensitive and quantitative measure of fibrosis. Moreover, fibrotic lesions did not completely resolve, but instead persisted for ≥6 months following a single insult with bleomycin. Ex vivo micro-CT analysis of BILF allows robust evaluation of therapeutic dosing once fibrosis is already well established, requiring fewer mice than conventional biochemical end-points.


Subject(s)
Bleomycin/adverse effects , Drug Evaluation, Preclinical , Pulmonary Fibrosis/chemically induced , X-Ray Microtomography/methods , Animals , Chromatography, High Pressure Liquid , Collagen/analysis , Disease Models, Animal , Disease Progression , Fibrosis , Humans , Imidazoles/chemistry , Lung/drug effects , Male , Mice , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/antagonists & inhibitors , Quinoxalines/chemistry , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Treatment Outcome
7.
Exp Physiol ; 97(6): 785-95, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22327329

ABSTRACT

Urotensin II (UII), a peptide hormone which influences glomerular filtration rate and urine concentration, and its receptor, UT, are expressed in the adult rat kidney. The ability of the kidney to reabsorb sodium and water starts to develop in utero and matures during early postnatal life in the rat, yet little is known about the ontogeny of the renal UII system. This study mapped renal expression of the urotensin system during the fetal and postnatal periods and determined renal activity of UII in the immature rat. Urotensin II peptide and mRNA were present in Sprague-Dawley (SD) rat metanephroi from the earliest stage examined, embyonic day 19 (E19; rat gestation 22 days); levels increased to peak at 4 weeks of age. In contrast, UT protein and mRNA expression declined rapidly between E19 and birth and remained at a similar level postnatally. Infusion of rat UII [6-60 pmol min(-1) (100 g body weight)(-1)] or rat urotensin-related peptide [6 pmol min(-1) (100 g body weight)(-1)] in anaesthetized 4-week-old SD rats had no influence on measured renal parameters; however, infusion of UT antagonist, SB-706375 (0.01 mg kg(-1) min(-1)), provoked a pronounced diuresis [vehicle 23.5 ± 1.9 versus antagonist 75.3 ± 12.5 µl min(-1) (100 g body weight)(-1); P < 0.001] and natriuresis, accompanied by modest increases in effective renal blood flow and glomerular filtration rate [vehicle 0.4 ± 0.1 versus antagonist 1.1 ± 0.2 ml min(-1) (100 g body weight)(-1); P < 0.0001] and a significant increase in fractional sodium excretion. These results indicate that the endogenous rat UII system may influence renal sodium and water excretion before the onset of full urine concentrating capacity in the SD rat.


Subject(s)
Glomerular Filtration Rate/physiology , Kidney/blood supply , Kidney/physiology , Urotensins/genetics , Urotensins/metabolism , Animals , Female , Fetus/metabolism , Glomerular Filtration Rate/genetics , Kidney/metabolism , Male , Natriuresis/genetics , Natriuresis/physiology , Peptide Hormones/genetics , Peptide Hormones/metabolism , RNA, Messenger/genetics , Rats , Rats, Sprague-Dawley , Regional Blood Flow/genetics , Regional Blood Flow/physiology , Sodium/metabolism , Urotensins/antagonists & inhibitors , Water/metabolism
8.
J Endocrinol ; 198(3): 617-24, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18577565

ABSTRACT

Urotensin II (UTS) is a potent vasoactive peptide that was originally identified in teleost fish. Mammalian orthologues of UTS and its receptor (UTSR) have been described in several species, including humans and rats. We have shown previously that bolus injections of UTS caused a decrease in urine flow and sodium excretion rates in parallel with marked reductions in renal blood flow (RBF) and glomerular filtration rate (GFR). The aim of this study was to determine the effect of UTS infusion at a dose that has minimal impact upon renal haemodynamics in order to identify a potential direct tubular action of UTS. Infusion of rat UTS (rUTS) at 0.6 pmol/min per 100 g body weight in male Sprague-Dawley rats, which had no effect on RBF and caused a 30% reduction in GFR, resulted in a significant increase in the fractional excretion of sodium (vehicle 2.3+/-0.6 versus rUTS 0.6 pmol 4.5+/-0.6%, P<0.05) and potassium. At the higher dose of 6 pmol/min per 100 g body weight, haemodynamic effects dominated the response. rUTS induced a marked reduction in RBF and GFR (vehicle 1.03+/-0.06 versus rUTS 6 pmol 0.31+/-0.05 ml/min per 100 g body weight, P<0.05) resulting in an anti-diuresis and anti-natriuresis, but no change in fractional excretion of sodium or potassium. Uts2d and Uts2r mRNA expression were greater in the renal medulla compared with the cortex. Together, these data support an inhibitory action of Uts2d on renal tubule sodium and potassium reabsorption in the rat, in addition to its previously described renal haemodynamic effects.


Subject(s)
Hemodynamics/drug effects , Kidney/drug effects , Kidney/metabolism , Urotensins/pharmacology , Animals , Blotting, Western , Diuresis/drug effects , Glomerular Filtration Rate/drug effects , Kidney Cortex/metabolism , Kidney Medulla/metabolism , Kidney Tubules/drug effects , Kidney Tubules/metabolism , Male , Natriuresis/drug effects , Peptide Hormones/genetics , Polymerase Chain Reaction , Potassium/metabolism , Rats , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/genetics , Renal Circulation/drug effects , Renin/metabolism , Sodium/metabolism , Spectrophotometry, Atomic
SELECTION OF CITATIONS
SEARCH DETAIL