Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 14: 1297099, 2024.
Article in English | MEDLINE | ID: mdl-38495650

ABSTRACT

Introduction: Oral transmission of T. cruzi is probably the most frequent transmission mechanism in wild animals. This observation led to the hypothesis that consuming raw or undercooked meat from animals infected with T. cruzi may be responsible for transmitting the infection. Therefore, the general objective of this study was to investigate host-pathogen interactions between the parasite and gastric mucosa and the role of meat consumption from infected animals in the oral transmission of T. cruzi. Methods: Cell infectivity assays were performed on AGS cells in the presence or absence of mucin, and the roles of pepsin and acidic pH were determined. Moreover, groups of five female Balb/c mice were fed with muscle tissue obtained from mice in the acute phase of infection by the clone H510 C8C3hvir of T. cruzi, and the infection of the fed mice was monitored by a parasitemia curve. Similarly, we assessed the infective capacity of T. cruzi trypomastigotes and amastigotes by infecting groups of five mice Balb/c females, which were infected orally using a nasogastric probe, and the infection was monitored by a parasitemia curve. Finally, different trypomastigote and amastigote inoculums were used to determine their infective capacities. Adhesion assays of T. cruzi proteins to AGS stomach cells were performed, and the adhered proteins were detected by western blotting using monoclonal or polyclonal antibodies and by LC-MS/MS and bioinformatics analysis. Results: Trypomastigote migration in the presence of mucin was reduced by approximately 30%, whereas in the presence of mucin and pepsin at pH 3.5, only a small proportion of parasites were able to migrate (∼6%). Similarly, the ability of TCTs to infect AGS cells in the presence of mucin is reduced by approximately 20%. In all cases, 60-100% of the animals were fed meat from mice infected in the acute phase or infected with trypomastigotes or amastigotes developed high parasitemia, and 80% died around day 40 post-infection. The adhesion assay showed that cruzipain is a molecule of trypomastigotes and amastigotes that binds to AGS cells. LC-MS/MS and bioinformatics analysis, also confirmed that transialidase, cysteine proteinases, and gp63 may be involved in TCTs attachment or invasion of human stomach cells because they can potentially interact with different proteins in the human stomach mucosa. In addition, several human gastric mucins have cysteine protease cleavage sites. Discussion: Then, under our experimental conditions, consuming meat from infected animals in the acute phase allows the T. cruzi infection. Similarly, trypomastigotes and amastigotes could infect mice when administered orally, whereas cysteinyl proteinases and trans-sialidase appear to be relevant molecules in this infective process.


Subject(s)
Chagas Disease , Communicable Diseases , Trypanosoma cruzi , Female , Animals , Mice , Humans , Trypanosoma cruzi/metabolism , Pepsin A/metabolism , Parasitemia , Disease Models, Animal , Chromatography, Liquid , Tandem Mass Spectrometry , Chagas Disease/parasitology , Mucins
2.
Curr Microbiol ; 79(4): 101, 2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35150342

ABSTRACT

Staphylococcus aureus is the main pathogen associated with bovine mastitis, an intramammary inflammation that leads to significant economic losses in dairy herds. Efforts have been made to identify the bacterial determinants important to the infective process but most of the studies are focused on surface and secreted proteins. Considering that virulence is affected by metabolism, in this study we contrasted the proteome of strains of S. aureus causing persistent subclinical (Sau302 and Sau340) and clinical bovine mastitis (RF122). Protein expressions from cytosolic fractions of bacteria grown under conditions mimicking the mastitic mammary glands are reported. A total of 342 proteins was identified, 52 of which were differentially expressed. Among those down-regulated in the subclinical strains were the two-component sensor histidine kinase SaeS and PurH, both involved in bacterial virulence. The ribosome hibernation promotion factor and the 50S ribosomal protein L13 were up-regulated suggesting that Sau302 and Sau340 modulate protein translation, a condition that may contribute to bacterial survival under stressful conditions. TRAP, a regulator possibly involved in pathogenesis, was expressed only in RF122 while proteins from the Isd system, involved in heme acquisition, were exclusive to Sau302 and Sau340. In summary, the metabolic differences suggest a reduced virulence of the strains causing subclinical mastitis which may contribute to the persistent infection seen in the animals.


Subject(s)
Mastitis, Bovine , Staphylococcal Infections , Animals , Cattle , Female , Proteomics , Staphylococcal Infections/veterinary , Staphylococcus aureus/genetics , Virulence
3.
mBio ; 6(5): e01421-15, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26396246

ABSTRACT

UNLABELLED: Nontyphoidal Salmonella enterica (NTS) infections are a major burden to global public health, as they lead to diseases ranging from gastroenteritis to systemic infections and there is currently no vaccine available. Here, we describe a highly effective component vaccine against S. enterica serovar Typhimurium in both gastroenteritis and systemic murine infection models. We devised an approach to generate supernatants of S. enterica serovar Typhimurium, an organism that is highly abundant in virulence factors. Immunization of mice with this supernatant resulted in dramatic protection against a challenge with serovar Typhimurium, showing increased survival in the systemic model and decreased intestinal pathology in the gastrointestinal model. Protection correlated with specific IgA and IgG levels in the serum and specific secretory IgA levels in the feces of immunized mice. Initial characterization of the protective antigens in the bacterial culture supernatants revealed a subset of antigens that exhibited remarkable stability, a highly desirable characteristic of an effective vaccine to be used under suboptimal environmental conditions in developing countries. We were able to purify a subset of the peptides present in the supernatants and show their potential for immunization of mice against serovar Typhimurium resulting in a decreased level of colonization. This component vaccine shows promise with regard to protecting against NTS, and further work should significantly help to establish vaccines against these prevalent infections. IMPORTANCE: Salmonella enterica infections other than typhoid and paratyphoid fever are a major global health burden, as they cause high morbidity and mortality worldwide. Strategies that prevent Salmonella-related diseases are greatly needed, and there is a significant push for the development of vaccines against nontyphoidal Salmonella enterica serovars. In this work, we describe an S. Typhimurium supernatant-derived vaccine that is effective in reducing bacterial colonization in mouse models of gastroenteritis as well as invasive disease. This is a component vaccine that shows high stability to heat, a feature that is important for use under suboptimal conditions, such as those found in sub-Saharan Africa.


Subject(s)
Culture Media/chemistry , Salmonella Infections/prevention & control , Salmonella Vaccines/administration & dosage , Salmonella Vaccines/immunology , Salmonella typhimurium/immunology , Animals , Antibodies, Bacterial/blood , Bacteremia/microbiology , Bacteremia/prevention & control , Disease Models, Animal , Feces/chemistry , Gastroenteritis/microbiology , Gastroenteritis/prevention & control , Immunoglobulin A/blood , Immunoglobulin A, Secretory/analysis , Immunoglobulin G/blood , Intestines/pathology , Mice , Salmonella Infections/microbiology , Salmonella Vaccines/isolation & purification , Salmonella typhimurium/growth & development , Survival Analysis , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Vaccines, Subunit/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL