Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Adv Mater ; 35(37): e2207595, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36437049

ABSTRACT

Emerging concepts for neuromorphic computing, bioelectronics, and brain-computer interfacing inspire new research avenues aimed at understanding the relationship between oxidation state and conductivity in unexplored materials. This report expands the materials playground for neuromorphic devices to include a mixed valence inorganic 3D coordination framework, a ruthenium Prussian blue analog (RuPBA), for flexible and biocompatible artificial synapses that reversibly switch conductance by more than four orders of magnitude based on electrochemically tunable oxidation state. The electrochemically tunable degree of mixed valency and electronic coupling between N-coordinated Ru sites controls the carrier concentration and mobility, as supported by density functional theory computations and application of electron transfer theory to in situ spectroscopy of intervalence charge transfer. Retention of programmed states is improved by nearly two orders of magnitude compared to extensively studied organic polymers, thus reducing the frequency, complexity, and energy costs associated with error correction schemes. This report demonstrates dopamine-mediated plasticity of RuPBA synapses and biocompatibility of RuPBA with neuronal cells, evoking prospective application for brain-computer interfacing.

2.
J Comput Chem ; 41(13): 1299-1309, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32112574

ABSTRACT

Reducing hydrogen embrittlement in the low-cost Fe─C based steels have the potential to significantly impact the development of hydrogen energy technologies. Molecular dynamics studies of hydrogen interactions with Fe─C steels provide fundamental information about the behavior of hydrogen at microstructural length scales, although such studies have not been performed due to the lack of an Fe─C─H ternary interatomic potential. In this work, the literature on interatomic potentials related to the Fe─C─H systems are reviewed with the aim of constructing an Fe─C─H potential from the published binary potentials. We found that Fe─C, Fe─H, and C─H bond order potentials exist and can be combined to construct an Fe─C─H ternary potential. Therefore, we constructed two such Fe─C─H potentials and demonstrate that these ternary potentials can reasonably capture hydrogen effects on deformation characteristics and deformation mechanisms for a variety of microstructural variations of the Fe─C steels, including martensite that results from γ to α phase transformation, and pearlite that results from the eutectic formation of the Fe3 C cementite compound.

3.
RSC Adv ; 10(60): 36887-36896, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-35517967

ABSTRACT

There is substantial demand for theoretical/computational tools that can produce correct predictions of the geometric structure and band gap to accelerate the design and screening of new materials with desirable electronic properties. DFT-based methods exist that reliably predict electronic structure given the correct geometry. Similarly, when good spectroscopic data are available, these same methods may, in principle, be used as input to the inverse problem of generating a good structural model. The same is generally true for gas-phase systems, for which the choice of method is different, but factors that guide its selection are known. Despite these successes, there are shortcomings associated with DFT for the prediction of materials' electronic structure. The present paper offers a perspective on these shortcomings. Fundamentally, the shortcomings associated with DFT stem from a lack of knowledge of the exact functional form of the exchange-correlation functional. Inaccuracies therefore arise from using an approximate functional. These inaccuracies can be reduced by judicious selection of the approximate functional. Other apparent shortcomings present due to misuse or improper application of the method. One of the most significant difficulties is the lack of a robust method for predicting electronic and geometric structure when only qualitative (connectivity) information is available about the system/material. Herein, some actual shortcomings of DFT are distinguished from merely common improper applications of the method. The role of the exchange functional in the predicted relationship between geometric structure and band gap is then explored, using fullerene, 2D polymorphs of elemental phosphorus and polyacetylene as case studies. The results suggest a potentially fruitful avenue of investigation by which some of the true shortcomings might be overcome, and serve as the basis for an appeal for high-accuracy experimental structure data to drive advances in theory.

4.
Phys Chem Chem Phys ; 21(31): 17176-17189, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31342979

ABSTRACT

Ionic liquids are a unique class of materials with several potential applications in electrochemical energy storage. When used in electrolytes, these highly coordinating solvents can influence device performance through their high viscosities and strong solvation behaviors. In this work, we explore the effects of pyrrolidinium cation structure and Li+ concentration on transport processes in ionic liquid electrolytes. We present correlated experimental measurements and molecular simulations of Li+ mobility and O2 diffusivity, and connect these results to dynamic molecular structural information and device performance. In the context of Li-O2/Li-air battery chemistries, we find that Li+ mobility is largely influenced by Li+-anion coordination, but that both Li+ and O2 diffusion may be affected by variations of the pyrrolidinium cation and Li+ concentration.

5.
Sci Rep ; 9(1): 3268, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30824712

ABSTRACT

The human eye is an exquisite photodetection system with the ability to detect single photons. The process of vision is initiated by single-photon absorption in the molecule retinal, triggering a cascade of complex chemical processes that eventually lead to the generation of an electrical impulse. Here, we analyze the single-photon detection prospects for an architecture inspired by the human eye: field-effect transistors employing carbon nanotubes functionalized with chromophores. We employ non-equilibrium quantum transport simulations of realistic devices to reveal device response upon absorption of a single photon. We establish the parameters that determine the strength of the response such as the magnitude and orientation of molecular dipole(s), as well as the arrangements of chromophores on carbon nanotubes. Moreover, we show that functionalization of a single nanotube with multiple chromophores allows for number resolution, whereby the number of photons in an incoming light packet can be determined. Finally, we assess the performance prospects by calculating the dark count rate, and we identify the most promising architectures and regimes of operation.

6.
Chem Sci ; 10(42): 9880-9892, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-32015812

ABSTRACT

Metal-Organic Frameworks (MOFs) that catalyze hydrogenolysis reactions are rare and there is little understanding of how the MOF, hydrogen, and substrate molecules interact. In this regard, the isoreticular IRMOF-74 series, two of which are known catalysts for hydrogenolysis of aromatic C-O bonds, provides an unusual opportunity for systematic probing of these reactions. The diameter of the 1D open channels can be varied within a common topology owing to the common secondary building unit (SBU) and controllable length of the hydroxy-carboxylate struts. We show that the first four members of the IRMOF-74(Mg) series are inherently catalytic for aromatic C-O bond hydrogenolysis and that the conversion varies non-monotonically with pore size. These catalysts are recyclable and reusable, retaining their crystallinity and framework structure after the hydrogenolysis reaction. The hydrogenolysis conversion of phenylethylphenyl ether (PPE), benzylphenyl ether (BPE), and diphenyl ether (DPE) varies as PPE > BPE > DPE, consistent with the strength of the C-O bond. Counterintuitively, however, the conversion also follows the trend IRMOF-74(III) > IRMOF-74(IV) > IRMOF-74(II) > IRMOF-74(I), with little variation in the corresponding selectivity. DFT calculations suggest the unexpected behavior is due to much stronger ether and phenol binding to the Mg(ii) open metal sites (OMS) of IRMOF-74(III), resulting from a structural distortion that moves the Mg2+ ions toward the interior of the pore. Solid-state 25Mg NMR data indicate that both H2 and ether molecules interact with the Mg(ii) OMS and hydrogen-deuterium exchange reactions show that these MOFs activate dihydrogen bonds. The results suggest that both confinement and the presence of reactive metals are essential for achieving the high catalytic activity, but that subtle variations in pore structure can significantly affect the catalysis. Moreover, they challenge the notion that simply increasing MOF pore size within a constant topology will lead to higher conversions.

7.
J Comput Chem ; 39(29): 2420-2431, 2018 Nov 05.
Article in English | MEDLINE | ID: mdl-30379326

ABSTRACT

Fe-Ni-Cr stainless-steels are important structural materials because of their superior strength and corrosion resistance. Atomistic studies of mechanical properties of stainless-steels, however, have been limited by the lack of high-fidelity interatomic potentials. Here using density functional theory as a guide, we have developed a new Fe-Ni-Cr embedded atom method potential. We demonstrate that our potential enables stable molecular dynamics simulations of stainless-steel alloys at high temperatures, accurately reproduces the stacking fault energy-known to strongly influence the mode of plastic deformation (e.g., twinning vs. dislocation glide vs. cross-slip)-of these alloys over a range of compositions, and gives reasonable elastic constants, energies, and volumes for various compositions. The latter are pertinent for determining short-range order and solute strengthening effects. Our results suggest that our potential is suitable for studying mechanical properties of austenitic and ferritic stainless-steels which have vast implementation in the scientific and industrial communities. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

8.
J Phys Chem Lett ; 9(3): 481-486, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29316790

ABSTRACT

Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 is a π-stacked layered metal-organic framework material with extended π-conjugation that is analogous to graphene. Published experimental results indicate that the material is semiconducting, but all theoretical studies to date predict the bulk material to be metallic. Given that previous experimental work was carried out on specimens containing complex nanocrystalline microstructures and the tendency for internal interfaces to introduce transport barriers, we apply DFT to investigate the influence of internal interface defects on the electronic structure of Ni3(HITP)2. The results show that interface defects can introduce a transport barrier by breaking the π-conjugation and/or decreasing the dispersion of the electronic bands near the Fermi level. We demonstrate that the presence of defects can open a small gap, in the range of 15-200 meV, which is consistent with the experimentally inferred hopping barrier.

9.
Phys Chem Chem Phys ; 19(29): 19461-19467, 2017 Jul 26.
Article in English | MEDLINE | ID: mdl-28718471

ABSTRACT

Two-dimensional (2D) materials have attracted much attention due to their novel properties. An exciting new class of 2D materials based on metal-organic frameworks (MOFs) has recently emerged, displaying high electrical conductivity, a rarity among organic nanoporous materials. The emergence of these materials raises intriguing questions about their fundamental electronic, optical, and thermal properties, but few studies exist in this regard. Here we present an atomistic study of the thermoelectric properties of crystalline 2D MOFs X3(HITP)2 with X = Ni, Pd or Pt, and HITP = 2,3,6,7,10,11-hexaiminotriphenylene, using both ab initio transport models and classical molecular dynamics simulations. We find that these materials have a high Seebeck coefficient and low thermal conductivity, making them promising for thermoelectric applications. Furthermore, we explore the dependence of thermoelectric transport properties on the atomic structure by comparing the calculated band structure, band alignment, and electronic density of states of the three 2D MOFs, and find that the thermoelectric transport properties strongly depend on both the interaction between the ligands and the metal ions, and the d orbital splitting of the metal ions induced by the ligands. This demonstrates that selection of the metal ion is a powerful approach to control and enhance the thermoelectric properties. Interestingly we reveal an unexpected effect where, unlike for electrons, the thermal and electrical current may not be equally carried by the holes, leading to a significant deviation from the Wiedemann-Franz law. The results of this work provide fundamental guidance to optimize the existing 2D MOFs, and to design and discover new families of MOF-like materials for thermoelectric applications.

10.
Inorg Chem ; 55(15): 7233-49, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27399607

ABSTRACT

As the world transitions from fossil fuels to clean energy sources in the coming decades, many technological challenges will require chemists and material scientists to develop new materials for applications related to energy conversion, storage, and efficiency. Because of their unprecedented adaptability, metal-organic frameworks (MOFs) will factor strongly in this portfolio. By utilizing the broad synthetic toolkit provided by the fields of organic and inorganic chemistry, MOF pores can be customized to suit a particular application. Of particular importance is the ability to tune the strength of the interaction between the MOF pores and guest molecules. By cleverly controlling these MOF-guest interactions, the chemist may impart new function into the Guest@MOF materials otherwise lacking in vacant MOF. Herein, we highlight the concept of the Guest@MOF as it relates to our efforts to develop these materials for energy-related applicatons. Our work in the areas of H2 and noble gas storage, hydrogenolysis of biomass, light-harvesting, and conductive materials will be discussed. Of relevance to light-harvesting applications, we report for the first time a postsynthetic modification strategy for increasing the loading of a light-sensitive electron-donor molecule in the pores of a functionalized MIL-101 structure. Through the demonstrated versatility of these approaches, we show that, by treating guest molecules as integral design elements for new MOF constructs, MOF science can have a significant impact on the advancement of clean energy technologies.

11.
J Phys Chem Lett ; 6(7): 1182-95, 2015 Apr 02.
Article in English | MEDLINE | ID: mdl-26262970

ABSTRACT

Metal-organic frameworks (MOFs) are crystalline nanoporous materials comprised of organic electron donors linked to metal ions by strong coordination bonds. Applications such as gas storage and separations are currently receiving considerable attention, but if the unique properties of MOFs could be extended to electronics, magnetics, and photonics, the impact on material science would greatly increase. Recently, we obtained "emergent properties," such as electronic conductivity and energy transfer, by infiltrating MOF pores with "guest" molecules that interact with the framework electronic structure. In this Perspective, we define a path to emergent properties based on the Guest@MOF concept, using zinc-carboxylate and copper-paddlewheel MOFs for illustration. Energy transfer and light harvesting are discussed for zinc carboxylate frameworks infiltrated with triplet-scavenging organometallic compounds and thiophene- and fullerene-infiltrated MOF-177. In addition, we discuss the mechanism of charge transport in TCNQ-infiltrated HKUST-1, the first MOF with electrical conductivity approaching conducting organic polymers. These examples show that guest molecules in MOF pores should be considered not merely as impurities or analytes to be sensed but also as an important aspect of rational design.

13.
Nat Commun ; 6: 6880, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25892219

ABSTRACT

Graphene films grown by vapour deposition tend to be polycrystalline due to the nucleation and growth of islands with different in-plane orientations. Here, using low-energy electron microscopy, we find that micron-sized graphene islands on Ir(111) rotate to a preferred orientation during thermal annealing. We observe three alignment mechanisms: the simultaneous growth of aligned domains and dissolution of rotated domains, that is, 'ripening'; domain boundary motion within islands; and continuous lattice rotation of entire domains. By measuring the relative growth velocity of domains during ripening, we estimate that the driving force for alignment is on the order of 0.1 meV per C atom and increases with rotation angle. A simple model of the orientation-dependent energy associated with the moiré corrugation of the graphene sheet due to local variations in the graphene-substrate interaction reproduces the results. This work suggests new strategies for improving the van der Waals epitaxy of 2D materials.

14.
Macromol Rapid Commun ; 35(17): 1516-21, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24979470

ABSTRACT

Bridgehead imine-substituted cyclopentadithiophene structural units, in combination with highly electronegative acceptors that exhibit progressively delocalized π-systems, afford donor-acceptor (DA) conjugated polymers with broad absorption profiles that span technologically relevant wavelength (λ) ranges from 0.7 < λ < 3.2 µm. A joint theoretical and experimental study demonstrates that the presence of the cross-conjugated substituent at the donor bridgehead position results in the capability to fine-tune structural and electronic properties so as to achieve very narrow optical bandgaps (Eg (opt) < 0.5 eV). This strategy affords modular DA copolymers with broad- and long-wavelength light absorption in the infrared and materials with some of the narrowest bandgaps reported to date.


Subject(s)
Polymers/chemistry , Solutions/chemistry , Cyclopentanes/chemistry , Quantum Theory , Semiconductors , Thiophenes/chemistry
15.
Science ; 343(6166): 66-9, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24310609

ABSTRACT

We report a strategy for realizing tunable electrical conductivity in metal-organic frameworks (MOFs) in which the nanopores are infiltrated with redox-active, conjugated guest molecules. This approach is demonstrated using thin-film devices of the MOF Cu3(BTC)2 (also known as HKUST-1; BTC, benzene-1,3,5-tricarboxylic acid) infiltrated with the molecule 7,7,8,8-tetracyanoquinododimethane (TCNQ). Tunable, air-stable electrical conductivity over six orders of magnitude is achieved, with values as high as 7 siemens per meter. Spectroscopic data and first-principles modeling suggest that the conductivity arises from TCNQ guest molecules bridging the binuclear copper paddlewheels in the framework, leading to strong electronic coupling between the dimeric Cu subunits. These ohmically conducting porous MOFs could have applications in conformal electronic devices, reconfigurable electronics, and sensors.

16.
J Am Chem Soc ; 134(48): 19709-15, 2012 Dec 05.
Article in English | MEDLINE | ID: mdl-23130993

ABSTRACT

Two novel arene-bridged cycloparaphenylene dimers (1 and 2) were prepared using a functionalized precursor, bromo-substituted macrocycle 7. The preferred conformations of these dimeric structures were evaluated computationally in the solid state, as well as in the gas and solution phases. In the solid state, the trans configuration of 1 is preferred by 34 kcal/mol due to the denser crystal packing structure that is achieved. In contrast, in the gas phase and in solution, the cis conformation is favored by 7 kcal/mol (dimer 1) and 10 kcal/mol (dimer 2), with a cis to trans activation barrier of 20 kcal/mol. The stabilization seen in the cis conformations is attributed to the increased van der Waals interactions between the two cycloparaphenylene rings. These calculations indicate that the cis conformation is accessible in solution, which is promising for future efforts toward the synthesis of short carbon nanotubes (CNTs) via cycloparaphenylene monomers. In addition, the optoelectronic properties of these dimeric cycloparaphenylenes were characterized both experimentally and computationally for the first time.

17.
J Chem Theory Comput ; 8(8): 2682-2687, 2012 Aug 14.
Article in English | MEDLINE | ID: mdl-22904693

ABSTRACT

Using a nonempirically tuned range-separated DFT approach, we study both the quasiparticle properties (HOMO-LUMO fundamental gaps) and excitation energies of DNA and RNA nucleobases (adenine, thymine, cytosine, guanine, and uracil). Our calculations demonstrate that a physically motivated, first-principles tuned DFT approach accurately reproduces results from both experimental benchmarks and more computationally intensive techniques such as many-body GW theory. Furthermore, in the same set of nucleobases, we show that the nonempirical range-separated procedure also leads to significantly improved results for excitation energies compared to conventional DFT methods. The present results emphasize the importance of a nonempirically tuned range-separation approach for accurately predicting both fundamental and excitation gaps in DNA and RNA nucleobases.

18.
J Phys Chem A ; 115(26): 7773-7, 2011 Jul 07.
Article in English | MEDLINE | ID: mdl-21595443

ABSTRACT

Switchable bistable [2]rotaxanes, such as those of the Stoddart-Heath-type, show promise for the development of molecular electronic devices and functional prototypes have been demonstrated. Herein, one such switchable rotaxane system is studied computationally at the AM1-FS1 and DFT levels of theory. The results show that the computationally efficient AM1-FS1 method, (efficient relative to DFT) is capable of reliably predicting properties such as binding site preference and coconformational relative stabilities as well as the barrier to isomerization between the different coconformational states. These properties play important roles in the functionality of rotaxane-based molecular electronic devices. In addition, the role of the counterions is assessed from a computational standpoint. The results reveal that inclusion of counterions is not as significant as has been previously suggested. Finally, the reorganization energy associated with oxidation/reduction of the complex is studied. This provides a possible link to the origin of the observed conductivity difference between the two coconformational states, the property upon which device functionality is based.

19.
J Abnorm Child Psychol ; 39(3): 365-77, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21080053

ABSTRACT

This longitudinal study examined processes that mediate the association between maternal depressive symptoms and peer social preference during the early school years. Three hundred and fifty six kindergarten children (182 boys) and their mothers participated in the study. During kindergarten, mothers reported their level of depressive symptomatology. In first grade, teachers rated children's emotion regulation at school and observers rated the affective quality of mother-child interactions. During second grade, children's social preference was assessed by peer nomination. Results indicated that mothers' level of depressive symptomatology negatively predicted their child's social preference 2 years later, controlling for the family SES and teacher-rated social preference during kindergarten. Among European American families, the association between maternal depressive symptoms and social preference was partially mediated by maternal warmth and the child's emotion regulation. Although the relation between maternal depressive symptoms and children peer preference was stronger among African American families than Europrean American families, its mediation by the maternal warmth and child's emotion regulation was not found in African American families.


Subject(s)
Depression/psychology , Emotions , Maternal Behavior/psychology , Mother-Child Relations , Mothers/psychology , Social Behavior , Adult , Child , Child of Impaired Parents/psychology , Child, Preschool , Female , Humans , Longitudinal Studies , Male , Parenting/psychology , Peer Group , Schools
20.
J Chem Theory Comput ; 6(7): 2153-66, 2010 Jul 13.
Article in English | MEDLINE | ID: mdl-26615942

ABSTRACT

Modeling systems that are governed by van der Waals (dispersion) interactions using empirically corrected DFT methods is becoming increasingly popular due to the promise of a CCSD(T) level accuracy at the computational cost of DFT. Although, DFT methods are computationally efficient in comparison to the CCSD(T) method, currently, structural optimizations using DFT methods are generally only feasible for systems of less than a few hundred atoms. We seek a method applicable to macromolecular complexes. In order to model such large systems, empirically corrected semiempirical methods appear to be an attractive alternative. As with most common DFT methods, the popular semiempirical methods (e.g., AM1) also do not model long-range dispersion (and therefore an empirical correction term is desirable), but this is not their only shortcoming. For weakly interacting systems, hydrogen bonding also poses a concern. A new empirically corrected AM1 method that uses two empirical correction terms, one for dispersion and one for hydrogen bonding interactions, is presented and termed AM1-FS1. This new empirically corrected AM1 method has been parametrized to a diverse training set of 66 complexes that includes nonequilibrium structures and yields sub-kilocalorie accuracy in the prediction of intermolecular interaction energies. More significantly, AM1-FS1 achieves this result with substantially less parametrization than existing empirically corrected semiempirical methods and without modification of the original AM1 parameters so that it retains both the computational efficiency and predictive power for thermo-chemical quantities of the original AM1 Hamiltonian. The performance of AM1-FS1 is also tested on several carbon nanostructure complexes and pseudorotaxanes and is found to produce results in very good agreement with the best first-principles calculations.

SELECTION OF CITATIONS
SEARCH DETAIL
...