Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
J Public Health Manag Pract ; 30(6): 879-886, 2024.
Article in English | MEDLINE | ID: mdl-39311885

ABSTRACT

CONTEXT: In fiscal year 2019, the Department of Health and Human Services (DHHS) received an appropriation from Congress specifically to update guidelines for investigating community cancer concerns. This resulted in the DHHS directing the Centers for Disease Control and Prevention (CDC) to fulfill this responsibility. PROGRAM: The CDC and the Agency for Toxic Substances and Disease Registry (ATSDR) provide guidance to state, tribal, local, and territorial (STLT) health departments and play important roles in supporting STLT programs in addressing community cancer concerns. IMPLEMENTATION: The updated guidelines offer enhancements addressing limitations and challenges regarding the process for investigating cancer clusters as expressed by STLT programs responsible for responding to inquiries and by communities impacted by unusual patterns of cancer. Additionally, the updated guidelines offer new tools and approaches associated with scientific advancements. Issues associated with improving communications and community engagement were a priority. Details in the updated guidelines provide suggestions for building and maintaining trust; provide resources via additional tools, templates, and methodology to facilitate sharing of information; provide suggestions for identifying agency and community points of contacts; and provide suggestions for establishing a community advisory committee. CONCLUSION: Enhancements to the previous guidelines were included to address advancements in statistical approaches and methods for understanding exposure pathways and also to respond to limitations described in the previous guidelines. Furthermore, these enhancements ensure communities have a voice in the process and offer methods to enhance transparency throughout the investigative process. Ultimately, the 2022 Guidelines are designed to ensure that community engagement, community input, and communication remains paramount to the process of assessing unusual patterns of cancer and environmental concerns.


Subject(s)
Community Participation , Neoplasms , Humans , United States , Community Participation/methods , Centers for Disease Control and Prevention, U.S./organization & administration , United States Dept. of Health and Human Services/organization & administration , Environmental Exposure/adverse effects , Environmental Exposure/prevention & control
2.
bioRxiv ; 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39314405

ABSTRACT

Addictive drugs hijack the neuronal mechanisms of learning and memory in motivation and emotion processing circuits to reinforce their own use. Regulator of G-protein Signaling 14 (RGS14) is a natural suppressor of post-synaptic plasticity underlying learning and memory in the hippocampus. The present study used immunofluorescence and RGS14 knockout mice to assess the role of RGS14 in behavioral plasticity and reward learning induced by chronic cocaine in emotional-motivational circuits. We report that RGS14 is strongly expressed in discrete regions of the ventral striatum and extended amygdala in wild-type mice, and is co-expressed with D1 and D2 dopamine receptors in neurons of the nucleus accumbens (NAc). Of note, we found that RGS14 is upregulated in the NAc in mice with chronic cocaine history following acute cocaine treatment. We found significantly increased cocaine-induced locomotor sensitization, as well as enhanced conditioned place preference and conditioned locomotor activity in RGS14-deficient mice compared to wild-type littermates. Together, these findings suggest that endogenous RGS14 suppresses cocaine-induced plasticity in emotional-motivational circuits, implicating RGS14 as a protective agent against the maladaptive neuroplastic changes that occur during addiction.

3.
bioRxiv ; 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39211190

ABSTRACT

Waning immunity and the emergence of immune evasive SARS-CoV-2 variants jeopardize vaccine efficacy leading to breakthrough infections. We have previously shown that innate immune cells play a critical role in controlling SARS-CoV-2. To investigate the innate immune response during breakthrough infections, we modeled breakthrough infections by challenging low-dose vaccinated mice with a vaccine-mismatched SARS-CoV-2 Beta variant. We found that low-dose vaccinated infected mice had a 2-log reduction in lung viral burden, but increased immune cell infiltration in the lung parenchyma, characterized by monocytes, monocyte-derived macrophages, and eosinophils. Single cell RNA-seq revealed viral RNA was highly associated with eosinophils that corresponded to a unique IFN-γ biased signature. Antibody-mediated depletion of eosinophils in vaccinated mice resulted in increased virus replication and dissemination in the lungs, demonstrating that eosinophils in the lungs are protective during SARS-CoV-2 breakthrough infections. These results highlight the critical role for the innate immune response in vaccine mediated protection against SARS-CoV-2.

4.
J Microsc ; 295(3): 243-256, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38594963

ABSTRACT

We present a comparison of common electron microscopy sample preparation methods for studying crystallisation processes from solution using both scanning and transmission electron microscopy (SEM and TEM). We focus on two widely studied inorganic systems: calcium sulphate, gypsum (CaSO4·2H2O) and calcium carbonate (CaCO3). We find significant differences in crystallisation kinetics and polymorph selection between the different sample preparation methods, which indicate that drying and chemical quenching can induce severe artefacts that are capable of masking the true native state of the crystallising solution. Overall, these results highlight the importance of cryogenic (cryo)-quenching crystallising solutions and the use of full cryo-TEM as the most reliable method for studying the early stages of crystallisation.

5.
Environ Res ; 240(Pt 1): 117451, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37871788

ABSTRACT

Organophosphate ester flame retardants and plasticizers (OPEs) are common exposures in modern built environments. Toxicological models report that some OPEs reduce dopamine and serotonin in the brain. Deficiencies in these neurotransmitters are associated with anxiety and depression. We hypothesized that exposure to higher concentrations of OPEs in house dust would be associated with a greater risk of depression and stress in mothers across the prenatal and postpartum periods. We conducted a nested prospective cohort study using data collected on mothers (n = 718) in the CHILD Cohort Study, a longitudinal multi-city Canadian birth cohort (2008-2012). OPEs were measured in house dust sampled at 3-4 months postpartum. Maternal depression and stress were measured at 18 and 36 weeks gestation and 6 months and 1 year postpartum using the Centre for Epidemiologic Studies for Depression Scale (CES-D) and Perceived Stress Scale (PSS). We used linear mixed models to examine the association between a summed Z-Score OPE index and continuous depression and stress scores. In adjusted models, one standard deviation increase in the OPE Z-score index was associated with a 0.07-point (95% CI: 0.01, 0.13) increase in PSS score. OPEs were not associated with log-transformed CES-D (ß: 0.63%, 95% CI: -0.18%, 1.46%). The effect of OPEs on PSS score was strongest at 36 weeks gestation and weakest at 1 year postpartum. We observed small increases in maternal perceived stress levels, but not depression, with increasing OPEs measured in house dust during the prenatal and early postpartum period in this cohort of Canadian women. Given the prevalence of prenatal and postpartum anxiety and the ubiquity of OPE exposures, additional research is warranted to understand if these chemicals affect maternal mental health.


Subject(s)
Flame Retardants , Pregnancy , Humans , Female , Flame Retardants/toxicity , Plasticizers/toxicity , Cohort Studies , Prospective Studies , Dust , Canada/epidemiology , Esters , Organophosphates/toxicity , Outcome Assessment, Health Care
6.
BMJ Open ; 13(9): e073817, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37734892

ABSTRACT

INTRODUCTION: Patient-reported outcomes (PRO) are currently collected from trial participants using paper questionnaires by the Clinical Trials and Statistics Unit at The Institute of Cancer Research (ICR-CTSU). Streamlining PRO collection using electronic questionnaires (ePRO) may improve data collection and patient experience. Here, we outline our protocol for a Study within a trial of electronic versus paper-based Patient-Reported oUtcomes CollEction (SPRUCE), which investigates the acceptability of ePRO in oncology clinical trials. METHODS AND ANALYSIS: SPRUCE was developed alongside patient and public contributors. SPRUCE runs in multiple host trials with a partially randomised patient preference design, allowing participants to be randomised or choose their preference of electronic or paper questionnaires. Questionnaires are scheduled in accordance with host trial follow-up. The primary objective will assess differences in return rates (compliance) between ePRO and paper PROs at the first timepoint post-host trial intervention in the randomised group. Paper PRO compliance is expected to be 90%. 244 randomised participants are required to exclude ≤80% compliance rates with ePRO (10% non-inferiority margin, with 80% power and one-sided alpha=0.05). SPRUCE aims to assess acceptability of ePRO in oncology clinical trials, establish whether ePRO is acceptable to ICR-CTSU trial participants and can capture complete PRO data, consistent with paper PROs. ETHICS AND DISSEMINATION: The SPRUCE protocol (ICR-CTSU/2021/10074) was approved by the Coventry and Warwick Central Research Ethics Committee (21/WM/0223) on 21 October 2021. Results will be disseminated via presentations, publications and lay summaries. No participant identifiable data will be included. TRIAL REGISTRATION: SWAT169.


Subject(s)
Academies and Institutes , Patient Preference , Humans , Data Collection , Electronics , Patient Reported Outcome Measures
7.
J Infect Dis ; 228(Suppl 7): S559-S570, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37610176

ABSTRACT

BACKGROUND: Marburg virus (MARV) has caused numerous sporadic outbreaks of severe hemorrhagic fever in humans. Human case fatality rates of Marburg virus disease (MVD) outbreaks range from 20% to 90%. Viral genotypes of MARV can differ by over 20%, suggesting variable virulence between lineages may accompany this genetic divergence. Comparison of existing animal models of MVD employing different strains of MARV support differences in virulence across MARV genetic lineages; however, there are few systematic comparisons in models that recapitulate human disease available. METHODS: We compared features of disease pathogenesis in uniformly lethal hamster models of MVD made possible through serial adaptation in rodents. RESULTS: No further adaptation from a previously reported guinea pig-adapted (GPA) isolate of MARV-Angola was necessary to achieve uniform lethality in hamsters. Three passages of GPA MARV-Ci67 resulted in uniform lethality, where 4 passages of a GPA Ravn virus was 75% lethal. Hamster-adapted MARV-Ci67 demonstrated delayed time to death, protracted weight loss, lower viral burden, and slower histologic alteration compared to GPA MARV-Angola. CONCLUSIONS: These data suggest isolate-dependent virulence differences are maintained even after serial adaptation in rodents and may serve to guide choice of variant and model used for development of vaccines or therapeutics for MVD.


Subject(s)
Marburg Virus Disease , Marburgvirus , Cricetinae , Humans , Guinea Pigs , Animals , Mesocricetus , Virulence , Angola
8.
J Expo Sci Environ Epidemiol ; 33(1): 102-110, 2023 01.
Article in English | MEDLINE | ID: mdl-36376586

ABSTRACT

BACKGROUND: Sanitary sewage overflows (SSOs) release raw sewage, which may contaminate the drinking water supply. Boil water advisories (BWAs) are issued during low or negative pressure events, alerting customers to potential contamination in the drinking water distribution system. OBJECTIVE: We evaluated the associations between SSOs and BWAs and diagnoses of gastrointestinal (GI) illness in Columbia, South Carolina, and neighboring communities, 2013-2017. METHODS: A symmetric bi-directional case-crossover study design was used to assess the role of SSOs and BWAs on Emergency Room and Urgent Care visits with a primary diagnosis of GI illness. Cases were considered exposed if an SSO or BWA occurred 0-4 days, 5-9 days, or 10-14 days prior to the diagnosis, within the same residential zip code. Effect modification was explored via stratification on participant-level factors (e.g., sex, race, age) and season (January-March versus April-December). RESULTS: There were 830 SSOs, 423 BWAs, and 25,969 cases of GI illness. Highest numbers of SSOs, BWAs and GI cases were observed in a zip code where >80% of residents identified as Black or African-American. SSOs were associated with a 13% increase in the odds of a diagnosis for GI illness during the 0-4 day hazard period, compared to control periods (Odds Ratio: 1.13, 95% Confidence Interval: 1.09, 1.18), while no associations were observed during the other hazard periods. BWAs were not associated with increased or decreased odds of GI illness during all three hazard periods. However, in stratified analyses BWAs issued between January-March were associated with higher odds of GI illness, compared to advisories issued between April-December, in all three hazard periods. SIGNIFICANCE: SSOs (all months) and BWAs (January-March) were associated with increased odds of a diagnosis of GI illness. Future research should examine sewage contamination of the drinking water distribution system, and mechanisms of sewage intrusion from SSOs. IMPACT: Sewage contains pathogens, which cause gastrointestinal (GI) illness. In Columbia, South Carolina, USA, between 2013-2017, there were 830 sanitary sewage overflows (SSOs). There were also 423 boil water advisories, which were issued during negative pressure events. Using case-crossover design, SSOs (all months) and boil water advisories (January-March) were associated with increased odds of Emergency Room and Urgent Care diagnoses of GI illness, potentially due to contamination of the drinking water distribution system. Lastly, we identified a community where >80% of residents identified as Black or African-American, which experienced a disproportionate burden of sewage exposure, compared to the rest of Columbia.


Subject(s)
Drinking Water , Humans , Cross-Over Studies , Sewage , South Carolina/epidemiology , Emergency Service, Hospital
9.
J Clin Invest ; 133(3)2023 02 01.
Article in English | MEDLINE | ID: mdl-36445779

ABSTRACT

The emergence of the novel henipavirus, Langya virus, received global attention after the virus sickened over three dozen people in China. There is heightened concern that henipaviruses, as respiratory pathogens, could spark another pandemic, most notably the deadly Nipah virus (NiV). NiV causes near-annual outbreaks in Bangladesh and India and induces a highly fatal respiratory disease and encephalitis in humans. No licensed countermeasures against this pathogen exist. An ideal NiV vaccine would confer both fast-acting and long-lived protection. Recently, we reported the generation of a recombinant vesicular stomatitis virus-based (rVSV-based) vaccine expressing the NiV glycoprotein (rVSV-ΔG-NiVBG) that protected 100% of nonhuman primates from NiV-associated lethality within a week. Here, to evaluate the durability of rVSV-ΔG-NiVBG, we vaccinated African green monkeys (AGMs) one year before challenge with an uniformly lethal dose of NiV. The rVSV-ΔG-NiVBG vaccine induced stable and robust humoral responses, whereas cellular responses were modest. All immunized AGMs (whether receiving a single dose or prime-boosted) survived with no detectable clinical signs or NiV replication. Transcriptomic analyses indicated that adaptive immune signatures correlated with vaccine-mediated protection. While vaccines for certain respiratory infections (e.g., COVID-19) have yet to provide durable protection, our results suggest that rVSV-ΔG-NiVBG elicits long-lasting immunity.


Subject(s)
COVID-19 , Nipah Virus , Vesicular Stomatitis , Viral Vaccines , Animals , Humans , Chlorocebus aethiops , Nipah Virus/genetics , Antibodies, Viral , Viral Vaccines/genetics , Vesiculovirus/genetics
11.
J Clin Oncol ; 40(33): 3808-3816, 2022 11 20.
Article in English | MEDLINE | ID: mdl-35759727

ABSTRACT

PURPOSE: To examine COVID-19 mRNA vaccine-induced binding and neutralizing antibody responses in patients with non-small-cell lung cancer (NSCLC) to SARS-CoV-2 614D (wild type [WT]) strain and variants of concern after the primary 2-dose and booster vaccination. METHODS: Eighty-two patients with NSCLC and 53 healthy volunteers who received SARS-CoV-2 mRNA vaccines were included in the study. Blood was collected longitudinally, and SARS-CoV-2-specific binding and neutralizing antibody responses were evaluated by Meso Scale Discovery assay and live virus Focus Reduction Neutralization Assay, respectively. RESULTS: A majority of patients with NSCLC generated binding and neutralizing antibody titers comparable with the healthy vaccinees after mRNA vaccination, but a subset of patients with NSCLC (25%) made poor responses, resulting in overall lower (six- to seven-fold) titers compared with the healthy cohort (P = < .0001). Although patients age > 70 years had lower immunoglobulin G titers (P = < .01), patients receiving programmed death-1 monotherapy, chemotherapy, or a combination of both did not have a significant impact on the antibody response. Neutralizing antibody titers to the B.1.617.2 (Delta), B.1.351 (Beta), and in particular, B.1.1.529 (Omicron) variants were significantly lower (P = < .0001) compared with the 614D (WT) strain. Booster vaccination led to a significant increase (P = .0001) in the binding and neutralizing antibody titers to the WT and Omicron variant. However, 2-4 months after the booster, we observed a five- to seven-fold decrease in neutralizing titers to WT and Omicron viruses. CONCLUSION: A subset of patients with NSCLC responded poorly to the SARS-CoV-2 mRNA vaccination and had low neutralizing antibodies to the B.1.1.529 Omicron variant. Booster vaccination increased binding and neutralizing antibody titers to Omicron, but antibody titers declined after 3 months. These data highlight the concern for patients with cancer given the rapid spread of SARS-CoV-2 Omicron variant.


Subject(s)
COVID-19 , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Aged , COVID-19 Vaccines , Antibody Formation , SARS-CoV-2 , Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/therapy , COVID-19/prevention & control , Antibodies, Viral , Immunization , Vaccination , Antibodies, Neutralizing , RNA, Messenger , mRNA Vaccines
12.
Trials ; 23(1): 372, 2022 May 07.
Article in English | MEDLINE | ID: mdl-35526005

ABSTRACT

BACKGROUND: Platform trial designs are used increasingly in cancer clinical research and are considered an efficient model for evaluating multiple compounds within a single disease or disease subtype. However, these trial designs can be challenging to operationalise. The use of platform trials in oncology clinical research has increased considerably in recent years as advances in molecular biology enable molecularly defined stratification of patient populations and targeted therapy evaluation. Whereas multiple separate trials may be deemed infeasible, platform designs allow efficient, parallel evaluation of multiple targeted therapies in relatively small biologically defined patient sub-populations with the promise of increased molecular screening efficiency and reduced time for drug evaluation. Whilst the theoretical efficiencies are widely reported, the operational challenges associated with these designs (complexity, cost, regulatory, resource) are not always well understood. MAIN: In this commentary, we describe our practical experience of the implementation and delivery of the UK plasmaMATCH trial, a platform trial in advanced breast cancer, comprising an integrated screening component and multiple parallel downstream mutation-directed therapeutic cohorts. plasmaMATCH reported its primary results within 3 years of opening to recruitment. We reflect on the operational challenges encountered and share lessons learnt to inform the successful conduct of future trials. Key to the success of the plasmaMATCH trial was well co-ordinated stakeholder engagement by an experienced clinical trials unit with expert methodology and trial management expertise, a federated model of clinical leadership, a well-written protocol integrating screening and treatment components and including justification for the chosen structure and intentions for future adaptions, and an integrated funding model with streamlined contractual arrangements across multiple partners. Findings based on our practical experience include the importance of early engagement with the regulators and consideration of a flexible resource infrastructure to allow adequate resource allocation to support concurrent trial activities as adaptions are implemented in parallel to the continued management of patient safety and data quality of the ongoing trial cohorts. CONCLUSION: Platform trial designs allow the efficient reporting of multiple treatment cohorts. Operational challenges can be overcome through multidisciplinary engagement, streamlined contracting processes, rationalised protocol and database design and appropriate resourcing.


Subject(s)
Breast Neoplasms , Clinical Trials, Phase II as Topic , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cohort Studies , Data Management , Female , Humans , Research Design
13.
Cell ; 185(9): 1556-1571.e18, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35447072

ABSTRACT

SARS-CoV-2 Omicron is highly transmissible and has substantial resistance to neutralization following immunization with ancestral spike-matched vaccines. It is unclear whether boosting with Omicron-matched vaccines would enhance protection. Here, nonhuman primates that received mRNA-1273 at weeks 0 and 4 were boosted at week 41 with mRNA-1273 or mRNA-Omicron. Neutralizing titers against D614G were 4,760 and 270 reciprocal ID50 at week 6 (peak) and week 41 (preboost), respectively, and 320 and 110 for Omicron. 2 weeks after the boost, titers against D614G and Omicron increased to 5,360 and 2,980 for mRNA-1273 boost and 2,670 and 1,930 for mRNA-Omicron, respectively. Similar increases against BA.2 were observed. Following either boost, 70%-80% of spike-specific B cells were cross-reactive against WA1 and Omicron. Equivalent control of virus replication in lower airways was observed following Omicron challenge 1 month after either boost. These data show that mRNA-1273 and mRNA-Omicron elicit comparable immunity and protection shortly after the boost.


Subject(s)
COVID-19 , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Macaca , RNA, Messenger
14.
Proc Natl Acad Sci U S A ; 119(12): e2200065119, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35286211

ABSTRACT

SignificanceConcern has increased about the pandemic potential of Nipah virus (NiV). Similar to SARS-CoV-2, NiV is an RNA virus that is transmitted by respiratory droplets. There are currently no NiV vaccines licensed for human use. While several preventive vaccines have shown promise in protecting animals against lethal NiV disease, most studies have assessed protection 1 mo after vaccination. However, in order to contain and control outbreaks, vaccines that can rapidly confer protection in days rather than months are needed. Here, we show that a recombinant vesicular stomatitis virus vector expressing the NiV glycoprotein can completely protect monkeys vaccinated 7 d prior to NiV exposure and 67% of animals vaccinated 3 d before NiV challenge.


Subject(s)
Henipavirus Infections/veterinary , Nipah Virus/immunology , Primate Diseases/prevention & control , Vaccines, Synthetic/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing , Antibodies, Viral/immunology , Biomarkers , Genetic Vectors , Kaplan-Meier Estimate , Neutralization Tests , Outcome Assessment, Health Care , Primate Diseases/diagnosis , Primate Diseases/mortality , Primate Diseases/virology , Vaccination , Viral Load
15.
Cell Rep Med ; 3(2): 100529, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35233550

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron variant emerged in November 2021 and consists of several mutations within the spike. We use serum from mRNA-vaccinated individuals to measure neutralization activity against omicron in a live-virus assay. At 2-4 weeks after a primary series of vaccinations, we observe a 30-fold reduction in neutralizing activity against omicron. Six months after the initial two-vaccine doses, sera from naive vaccinated subjects show no neutralizing activity against omicron. In contrast, COVID-19-recovered individuals 6 months after receiving the primary series of vaccinations show a 22-fold reduction, with the majority of the subjects retaining neutralizing antibody responses. In naive individuals following a booster shot (third dose), we observe a 14-fold reduction in neutralizing activity against omicron, and over 90% of subjects show neutralizing activity. These findings show that a third dose is required to provide robust neutralizing antibody responses against the omicron variant.


Subject(s)
2019-nCoV Vaccine mRNA-1273/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccination/methods , Adult , Aged , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Cohort Studies , Female , Humans , Immunization, Secondary/methods , Male , Middle Aged , Mutation , Neutralization Tests , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , Young Adult
16.
Clin Infect Dis ; 75(1): e350-e353, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35037030

ABSTRACT

We describe rapid detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant using targeted spike single-nucleotide polymorphism polymerase chain reaction and viral genome sequencing. This case occurred in a fully vaccinated and boosted returning traveler with mild symptoms who was identified through community surveillance rather than clinical care.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Genome, Viral , Humans , Polymerase Chain Reaction , SARS-CoV-2/genetics
17.
Nature ; 603(7902): 687-692, 2022 03.
Article in English | MEDLINE | ID: mdl-35062015

ABSTRACT

The recent emergence of B.1.1.529, the Omicron variant1,2, has raised concerns of escape from protection by vaccines and therapeutic antibodies. A key test for potential countermeasures against B.1.1.529 is their activity in preclinical rodent models of respiratory tract disease. Here, using the collaborative network of the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme of the National Institute of Allergy and Infectious Diseases (NIAID), we evaluated the ability of several B.1.1.529 isolates to cause infection and disease in immunocompetent and human ACE2 (hACE2)-expressing mice and hamsters. Despite modelling data indicating that B.1.1.529 spike can bind more avidly to mouse ACE2 (refs. 3,4), we observed less infection by B.1.1.529 in 129, C57BL/6, BALB/c and K18-hACE2 transgenic mice than by previous SARS-CoV-2 variants, with limited weight loss and lower viral burden in the upper and lower respiratory tracts. In wild-type and hACE2 transgenic hamsters, lung infection, clinical disease and pathology with B.1.1.529 were also milder than with historical isolates or other SARS-CoV-2 variants of concern. Overall, experiments from the SAVE/NIAID network with several B.1.1.529 isolates demonstrate attenuated lung disease in rodents, which parallels preliminary human clinical data.


Subject(s)
COVID-19/pathology , COVID-19/virology , Disease Models, Animal , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Cricetinae , Female , Humans , Lung/pathology , Lung/virology , Male , Mesocricetus , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Viral Load
18.
medRxiv ; 2022 Jan 23.
Article in English | MEDLINE | ID: mdl-35018383

ABSTRACT

PURPOSE: We investigated SARS-CoV-2 mRNA vaccine-induced binding and live-virus neutralizing antibody response in NSCLC patients to the SARS-CoV-2 wild type strain and the emerging Delta and Omicron variants. METHODS: 82 NSCLC patients and 53 healthy adult volunteers who received SARS-CoV-2 mRNA vaccines were included in the study. Blood was collected longitudinally, and SARS-CoV-2-specific binding and live-virus neutralization response to 614D (WT), B.1.617.2 (Delta), B.1.351 (Beta) and B.1.1.529 (Omicron) variants were evaluated by Meso Scale Discovery (MSD) assay and Focus Reduction Neutralization Assay (FRNT) respectively. We determined the longevity and persistence of vaccine-induced antibody response in NSCLC patients. The effect of vaccine-type, age, gender, race and cancer therapy on the antibody response was evaluated. RESULTS: Binding antibody titer to the mRNA vaccines were lower in the NSCLC patients compared to the healthy volunteers (P=<0.0001). More importantly, NSCLC patients had reduced live-virus neutralizing activity compared to the healthy vaccinees (P=<0.0001). Spike and RBD-specific binding IgG titers peaked after a week following the second vaccine dose and declined after six months (P=<0.001). While patients >70 years had lower IgG titers (P=<0.01), patients receiving either PD-1 monotherapy, chemotherapy or a combination of both did not have a significant impact on the antibody response. Binding antibody titers to the Delta and Beta variants were lower compared to the WT strain (P=<0.0001). Importantly, we observed significantly lower FRNT50 titers to Delta (6-fold), and Omicron (79-fold) variants (P=<0.0001) in NSCLC patients. CONCLUSIONS: Binding and live-virus neutralizing antibody titers to SARS-CoV-2 mRNA vaccines in NSCLC patients were lower than the healthy vaccinees, with significantly lower live-virus neutralization of B.1.617.2 (Delta), and more importantly, the B.1.1.529 (Omicron) variant compared to the wild-type strain. These data highlight the concern for cancer patients given the rapid spread of SARS-CoV-2 Omicron variant.

20.
medRxiv ; 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34931200

ABSTRACT

The Omicron variant of SARS-CoV-2 is raising concerns because of its increased transmissibility and potential for reduced susceptibility to antibody neutralization. To assess the potential risk of this variant to existing vaccines, serum samples from mRNA-1273 vaccine recipients were tested for neutralizing activity against Omicron and compared to neutralization titers against D614G and Beta in live virus and pseudovirus assays. Omicron was 41-84-fold less sensitive to neutralization than D614G and 5.3-7.4-fold less sensitive than Beta when assayed with serum samples obtained 4 weeks after 2 standard inoculations with 100 µg mRNA-1273. A 50 µg boost increased Omicron neutralization titers and may substantially reduce the risk of symptomatic vaccine breakthrough infections.

SELECTION OF CITATIONS
SEARCH DETAIL