Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neuropathol Commun ; 9(1): 130, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34340718

ABSTRACT

Cerebral pericytes are an integral component of the neurovascular unit, which governs the blood-brain barrier. There is paucity of knowledge on cortical pericytes across different dementias. We quantified cortical pericytes in capillaries in 124 post-mortem brains from subjects with post-stroke dementia (PSD), vascular dementia (VaD), Alzheimer's disease (AD) and AD-VaD (Mixed) and, post-stroke non-demented (PSND) stroke survivors as well as normal ageing controls. Collagen 4 (COL4)-positive nucleated pericyte soma were identified as protrusions on capillaries of the frontal cortex. The COL4-positive somata or nodule-like cell bodies were also verified by platelet derived growth factor receptor-ß (PDGFR-ß) immunohistochemistry. The mean (± SEM) pericyte somata in frontal cortical capillaries in normal young controls (46-65 years of age) was estimated as 5.2 ± 0.2 per mm capillary length. This number was reduced by 45% in older controls (> 78 years) to 2.9 ± 0.1 per mm capillary length (P < 0.001). We further found that the numbers of pericyte cell bodies per COL4 mm2 area or per mm capillary length were not decreased but rather preserved or increased in PSD, AD and Mixed dementia groups compared to similar age older controls (P < 0.01). Consistent with this, we noted that capillary length densities identified by the endothelial marker glucose transporter 1 or COL4 were not different across the dementias compared to older controls. There was a negative correlation with age (P < 0.001) suggesting fewer pericyte somata in older age, although the % COL4 immunoreactive capillary area was increased in older controls compared to young controls. Using a proven reliable method to quantify COL4-positive nucleated pericytes, our observations demonstrate ageing related loss but mostly preserved pericytes in the frontal cortex of vascular and AD dementias. We suggest there is differential regulation of capillary pericytes in the frontal lobe between the cortex and white matter in ageing-related dementias.


Subject(s)
Alzheimer Disease/pathology , Capillaries/pathology , Dementia, Vascular/pathology , Dementia/pathology , Frontal Lobe/blood supply , Pericytes/pathology , Aged , Aged, 80 and over , Capillaries/cytology , Case-Control Studies , Cell Count , Collagen Type IV/metabolism , Dementia/etiology , Female , Humans , Male , Middle Aged , Pericytes/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism , Stroke/complications
2.
Brain ; 139(Pt 1): 242-58, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26667280

ABSTRACT

White matter hyperintensities as seen on brain T2-weighted magnetic resonance imaging are associated with varying degrees of cognitive dysfunction in stroke, cerebral small vessel disease and dementia. The pathophysiological mechanisms within the white matter accounting for cognitive dysfunction remain unclear. With the hypothesis that gliovascular interactions are impaired in subjects with high burdens of white matter hyperintensities, we performed clinicopathological studies in post-stroke survivors, who had exhibited greater frontal white matter hyperintensities volumes that predicted shorter time to dementia onset. Histopathological methods were used to identify substrates in the white matter that would distinguish post-stroke demented from post-stroke non-demented subjects. We focused on the reactive cell marker glial fibrillary acidic protein (GFAP) to study the incidence and location of clasmatodendrosis, a morphological attribute of irreversibly injured astrocytes. In contrast to normal appearing GFAP+ astrocytes, clasmatodendrocytes were swollen and had vacuolated cell bodies. Other markers such as aldehyde dehydrogenase 1 family, member L1 (ALDH1L1) showed cytoplasmic disintegration of the astrocytes. Total GFAP+ cells in both the frontal and temporal white matter were not greater in post-stroke demented versus post-stroke non-demented subjects. However, the percentage of clasmatodendrocytes was increased by >2-fold in subjects with post-stroke demented compared to post-stroke non-demented subjects (P = 0.026) and by 11-fold in older controls versus young controls (P < 0.023) in the frontal white matter. High ratios of clasmotodendrocytes to total astrocytes in the frontal white matter were consistent with lower Mini-Mental State Examination and the revised Cambridge Cognition Examination scores in post-stroke demented subjects. Double immunofluorescent staining showed aberrant co-localization of aquaporin 4 (AQP4) in retracted GFAP+ astrocytes with disrupted end-feet juxtaposed to microvessels. To explore whether this was associated with the disrupted gliovascular interactions or blood-brain barrier damage, we assessed the co-localization of GFAP and AQP4 immunoreactivities in post-mortem brains from adult baboons with cerebral hypoperfusive injury, induced by occlusion of three major vessels supplying blood to the brain. Analysis of the frontal white matter in perfused brains from the animals surviving 1-28 days after occlusion revealed that the highest intensity of fibrinogen immunoreactivity was at 14 days. At this survival time point, we also noted strikingly similar redistribution of AQP4 and GFAP+ astrocytes transformed into clasmatodendrocytes. Our findings suggest novel associations between irreversible astrocyte injury and disruption of gliovascular interactions at the blood-brain barrier in the frontal white matter and cognitive impairment in elderly post-stroke survivors. We propose that clasmatodendrosis is another pathological substrate, linked to white matter hyperintensities and frontal white matter changes, which may contribute to post-stroke or small vessel disease dementia.


Subject(s)
Aging/pathology , Astrocytes/pathology , Dementia/complications , Dementia/pathology , Stroke/complications , White Matter/pathology , Aged , Aged, 80 and over , Aldehyde Dehydrogenase/metabolism , Animals , Aquaporin 4/metabolism , Astrocytes/metabolism , Blood-Brain Barrier/pathology , Case-Control Studies , Cognition Disorders/pathology , Female , Frontal Lobe/blood supply , Frontal Lobe/pathology , Glial Fibrillary Acidic Protein/metabolism , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuroimaging , Neuropsychological Tests , Oxidoreductases Acting on CH-NH Group Donors , Papio anubis , Stroke/pathology , White Matter/blood supply
3.
Brain ; 137(Pt 9): 2509-21, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24974383

ABSTRACT

Dementia associated with cerebrovascular disease is common. It has been reported that ∼30% of elderly patients who survive stroke develop delayed dementia (post-stroke dementia), with most cases being diagnosed as vascular dementia. The pathological substrates associated with post-stroke or vascular dementia are poorly understood, particularly those associated with executive dysfunction. Three separate yet interconnecting circuits control executive function within the frontal lobe involving the dorsolateral prefrontal cortex, anterior cingulate cortex and the orbitofrontal cortex. We used stereological methods, along with immunohistological and related cell morphometric analysis, to examine densities and volumes of pyramidal neurons of the dorsolateral prefrontal cortex, anterior cingulate cortex and orbitofrontal cortex in the frontal lobe from a total of 90 elderly subjects (age range 71-98 years). Post-mortem brain tissues from post-stroke dementia and post-stroke patients with no dementia were derived from our prospective Cognitive Function After Stroke study. We also examined, in parallel, samples from ageing controls and similar age subjects pathologically diagnosed with Alzheimer's disease, mixed Alzheimer's disease and vascular dementia, and vascular dementia. We found pyramidal cell volumes in layers III and V in the dorsolateral prefrontal cortex of post-stroke and vascular dementia and, of mixed and Alzheimer's disease subjects to be reduced by 30-40% compared to post-stroke patients with no dementia and controls. There were no significant changes in neuronal volumes in either the anterior cingulate or orbitofrontal cortices. Remarkably, pyramidal neurons within the orbitofrontal cortex were also found to be smaller in size when compared to those in the other two neocortical regions. To relate the cell changes to cognitive function, we noted significant correlations between neuronal volumes and total CAMCOG, orientation and memory scores and clinical dementia ratings. Total estimated neuronal densities were not significantly changed between patients with post-stroke dementia and post-stroke patients with no dementia groups or ageing controls in any of the three frontal regions. In further morphometric analysis of the dorsolateral prefrontal cortex, we showed that neither diffuse cerebral atrophy nor neocortical thickness explained the selective neuronal volume effects. We also noted that neurofilament protein SMI31 immunoreactivity was increased in post-stroke and vascular dementia compared with post-stroke patients with no dementia and correlated with decreased neuronal volumes in subjects with post-stroke dementia and vascular dementia. Our findings suggest selective regional pyramidal cell atrophy in the dorsolateral prefrontal cortex-rather than neuronal density changes per se-are associated with dementia and executive dysfunction in post-stroke dementia and vascular dementia. The changes in dorsolateral prefrontal cortex pyramidal cells were not associated with neurofibrillary pathology suggesting there is a vascular basis for the observed highly selective neuronal atrophy.


Subject(s)
Aging/pathology , Dementia, Vascular/diagnosis , Prefrontal Cortex/pathology , Pyramidal Cells/pathology , Aged , Aged, 80 and over , Aging/psychology , Alzheimer Disease/diagnosis , Alzheimer Disease/psychology , Brief Psychiatric Rating Scale/standards , Dementia, Vascular/physiopathology , Dementia, Vascular/psychology , Female , Humans , Male , Prefrontal Cortex/blood supply , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...