Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(7): e28358, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38689972

ABSTRACT

The development of single-cell omics tools has enabled scientists to study the tumor microenvironment (TME) in unprecedented detail. However, each of the different techniques may have its unique strengths and limitations. Here we directly compared two commercially available high-throughput single-cell RNA sequencing (scRNA-seq) technologies - droplet-based 10X Chromium vs. microwell-based BD Rhapsody - using paired samples from patients with localized prostate cancer (PCa) undergoing a radical prostatectomy. Although high technical consistency was observed in unraveling the whole transcriptome, the relative abundance of cell populations differed. Cells with low mRNA content such as T cells were underrepresented in the droplet-based system, at least partly due to lower RNA capture rates. In contrast, microwell-based scRNA-seq recovered less cells of epithelial origin. Moreover, we discovered platform-dependent variabilities in mRNA quantification and cell-type marker annotation. Overall, our study provides important information for selection of the appropriate scRNA-seq platform and for the interpretation of published results.

2.
Oncogene ; 43(4): 235-247, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38017134

ABSTRACT

Despite significant therapeutic advances in recent years, treatment of metastatic prostate cancer (PCa) remains palliative, owing to the inevitable occurrence of drug resistance. There is increasing evidence that epithelial glucocorticoid receptor (GR) signaling and changes in the tumor-microenvironment (TME) play important roles in this process. Since glucocorticoids (GCs) are used as concomitant medications in the course of PCa treatment, it is essential to investigate the impact of GCs on stromal GR signaling in the TME. Therefore, general GR mRNA and protein expression was assessed in radical prostatectomy specimens and metastatic lesions. Elevated stromal GR signaling after GC treatment resulted in altered GR-target gene, soluble protein expression, and in a morphology change of immortalized and primary isolated cancer-associated fibroblasts (CAFs). Subsequently, these changes affected proliferation, colony formation, and 3D-spheroid growth of multiple epithelial PCa cell models. Altered expression of extra-cellular matrix (ECM) and adhesion-related proteins led to an ECM remodeling. Notably, androgen receptor pathway inhibitor treatments did not affect CAF viability. Our findings demonstrate that GC-mediated elevated GR signaling has a major impact on the CAF secretome and the ECM architecture. GC-treated fibroblasts significantly influence epithelial tumor cell growth and must be considered in future therapeutic strategies.


Subject(s)
Cancer-Associated Fibroblasts , Prostatic Neoplasms , Male , Humans , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , Glucocorticoids/metabolism , Prostate/pathology , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Tumor Microenvironment , Cell Line, Tumor , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Fibroblasts/metabolism , Cancer-Associated Fibroblasts/metabolism
3.
iScience ; 26(12): 108399, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38047086

ABSTRACT

Precision oncology approaches for patients with colorectal cancer (CRC) continue to lag behind other solid cancers. Functional precision oncology-a strategy that is based on perturbing primary tumor cells from cancer patients-could provide a road forward to personalize treatment. We extend this paradigm to measuring proteome activity landscapes by acquiring quantitative phosphoproteomic data from patient-derived organoids (PDOs). We show that kinase inhibitors induce inhibitor- and patient-specific off-target effects and pathway crosstalk. Reconstruction of the kinase networks revealed that the signaling rewiring is modestly affected by mutations. We show non-genetic heterogeneity of the PDOs and upregulation of stemness and differentiation genes by kinase inhibitors. Using imaging mass-cytometry-based profiling of the primary tumors, we characterize the tumor microenvironment (TME) and determine spatial heterocellular crosstalk and tumor-immune cell interactions. Collectively, we provide a framework for inferring tumor cell intrinsic signaling and external signaling from the TME to inform precision (immuno-) oncology in CRC.

4.
J Biol Chem ; 299(4): 102972, 2023 04.
Article in English | MEDLINE | ID: mdl-36738788

ABSTRACT

Cavß subunits are essential for surface expression of voltage-gated calcium channel complexes and crucially modulate biophysical properties like voltage-dependent inactivation. Here, we describe the discovery and characterization of a novel Cavß2 variant with distinct features that predominates in the retina. We determined spliced exons in retinal transcripts of the Cacnb2 gene, coding for Cavß2, by RNA-Seq data analysis and quantitative PCR. We cloned a novel Cavß2 splice variant from mouse retina, which we are calling ß2i, and investigated biophysical properties of calcium currents with this variant in a heterologous expression system as well as its intrinsic membrane interaction when expressed alone. Our data showed that ß2i predominated in the retina with expression in photoreceptors and bipolar cells. Furthermore, we observed that the ß2i N-terminus exhibited an extraordinary concentration of hydrophobic residues, a distinct feature not seen in canonical variants. The biophysical properties resembled known membrane-associated variants, and ß2i exhibited both a strong membrane association and a propensity for clustering, which depended on hydrophobic residues in its N-terminus. We considered available Cavß structure data to elucidate potential mechanisms underlying the observed characteristics but resolved N-terminus structures were lacking and thus, precluded clear conclusions. With this description of a novel N-terminus variant of Cavß2, we expand the scope of functional variation through N-terminal splicing with a distinct form of membrane attachment. Further investigation of the molecular mechanisms underlying the features of ß2i could provide new angles on the way Cavß subunits modulate Ca2+ channels at the plasma membrane.


Subject(s)
Alternative Splicing , Calcium Channels, L-Type , Retina , Animals , Mice , Calcium/metabolism , Calcium Channels, L-Type/metabolism , Cell Membrane/genetics , Cell Membrane/metabolism , Exons , Protein Subunits/metabolism , Retina/metabolism
5.
Cancer Cell ; 40(12): 1503-1520.e8, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36368318

ABSTRACT

Non-small cell lung cancer (NSCLC) is characterized by molecular heterogeneity with diverse immune cell infiltration patterns, which has been linked to therapy sensitivity and resistance. However, full understanding of how immune cell phenotypes vary across different patient subgroups is lacking. Here, we dissect the NSCLC tumor microenvironment at high resolution by integrating 1,283,972 single cells from 556 samples and 318 patients across 29 datasets, including our dataset capturing cells with low mRNA content. We stratify patients into immune-deserted, B cell, T cell, and myeloid cell subtypes. Using bulk samples with genomic and clinical information, we identify cellular components associated with tumor histology and genotypes. We then focus on the analysis of tissue-resident neutrophils (TRNs) and uncover distinct subpopulations that acquire new functional properties in the tissue microenvironment, providing evidence for the plasticity of TRNs. Finally, we show that a TRN-derived gene signature is associated with anti-programmed cell death ligand 1 (PD-L1) treatment failure.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Neutrophils/metabolism , Tumor Microenvironment , B7-H1 Antigen/metabolism
6.
Mol Cancer ; 21(1): 132, 2022 06 18.
Article in English | MEDLINE | ID: mdl-35717322

ABSTRACT

BACKGROUND: Crosstalk between neoplastic and stromal cells fosters prostate cancer (PCa) progression and dissemination. Insight in cell-to-cell communication networks provides new therapeutic avenues to mold processes that contribute to PCa tumor microenvironment (TME) alterations. Here we performed a detailed characterization of PCa tumor endothelial cells (TEC) to delineate intercellular crosstalk between TEC and the PCa TME. METHODS: TEC isolated from 67 fresh radical prostatectomy (RP) specimens underwent multi-omic ex vivo characterization as well as orthogonal validation of both TEC functions and key markers by immunohistochemistry (IHC) and immunofluorescence (IF). To identify cell-cell interaction targets in TEC, we performed single-cell RNA sequencing (scRNA-seq) in four PCa patients who underwent a RP to catalogue cellular TME composition. Targets were cross-validated using IHC, publicly available datasets, cell culture expriments as well as a PCa xenograft mouse model. RESULTS: Compared to adjacent normal endothelial cells (NEC) bulk RNA-seq analysis revealed upregulation of genes associated with tumor vasculature, collagen modification and extracellular matrix remodeling in TEC. PTGIR, PLAC9, CXCL12 and VDR were identified as TEC markers and confirmed by IF and IHC in an independent patient cohort. By scRNA-seq we identified 27 cell (sub)types, including endothelial cells (EC) with arterial, venous and immature signatures, as well as angiogenic tip EC. A focused molecular analysis revealed that arterial TEC displayed highest CXCL12 mRNA expression levels when compared to all other TME cell (sub)populations and showed a negative prognostic role. Receptor-ligand interaction analysis predicted interactions between arterial TEC derived CXCL12 and its cognate receptor CXCR4 on angiogenic tip EC. CXCL12 was in vitro and in vivo validated as actionable TEC target by highlighting the vessel number- and density- reducing activity of the CXCR4-inhibitor AMD3100 in murine PCa as well as by inhibition of TEC proliferation and migration in vitro. CONCLUSIONS: Overall, our comprehensive analysis identified novel PCa TEC targets and highlights CXCR4/CXCL12 interaction as a potential novel target to interfere with tumor angiogenesis in PCa.


Subject(s)
Prostate , Prostatic Neoplasms , Animals , Cell Line, Tumor , Cell Proliferation , Chemokine CXCL12/genetics , Chemokine CXCL12/metabolism , Endothelial Cells/metabolism , Humans , Male , Mice , Prostate/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Receptors, Epoprostenol , Tumor Microenvironment
7.
Bioinformatics ; 38(4): 1131-1132, 2022 01 27.
Article in English | MEDLINE | ID: mdl-34788790

ABSTRACT

SUMMARY: Somatic mutations and gene fusions can produce immunogenic neoantigens mediating anticancer immune responses. However, their computational prediction from sequencing data requires complex computational workflows to identify tumor-specific aberrations, derive the resulting peptides, infer patients' Human Leukocyte Antigen types and predict neoepitopes binding to them, together with a set of features underlying their immunogenicity. Here, we present nextNEOpi (nextflow NEOantigen prediction pipeline) a comprehensive and fully automated bioinformatic pipeline to predict tumor neoantigens from raw DNA and RNA sequencing data. In addition, nextNEOpi quantifies neoepitope- and patient-specific features associated with tumor immunogenicity and response to immunotherapy. AVAILABILITY AND IMPLEMENTATION: nextNEOpi source code and documentation are available at https://github.com/icbi-lab/nextNEOpi. CONTACT: dietmar.rieder@i-med.ac.at or francesca.finotello@uibk.ac.at. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics , Antigens, Neoplasm/genetics , Peptides/genetics , Sequence Analysis, RNA
8.
BMC Genomics ; 21(1): 761, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33143653

ABSTRACT

BACKGROUND: The Collaborative Cross (CC) mouse population is a valuable resource to study the genetic basis of complex traits, such as obesity. Although the development of obesity is influenced by environmental factors, underlying genetic mechanisms play a crucial role in the response to these factors. The interplay between the genetic background and the gene expression pattern can provide further insight into this response, but we lack robust and easily reproducible workflows to integrate genomic and transcriptomic information in the CC mouse population. RESULTS: We established an automated and reproducible integrative workflow to analyse complex traits in the CC mouse genetic reference panel at the genomic and transcriptomic levels. We implemented the analytical workflow to assess the underlying genetic mechanisms of host susceptibility to diet induced obesity and integrated these results with diet induced changes in the hepatic gene expression of susceptible and resistant mice. Hepatic gene expression differs significantly between obese and non-obese mice, with a significant sex effect, where male and female mice exhibit different responses and coping mechanisms. CONCLUSION: Integration of the data showed that different genes but similar pathways are involved in the genetic susceptibility and disturbed in diet induced obesity. Genetic mechanisms underlying susceptibility to high-fat diet induced obesity are different in female and male mice. The clear distinction we observed in the systemic response to the high-fat diet challenge and to obesity between male and female mice points to the need for further research into distinct sex-related mechanisms in metabolic disease.


Subject(s)
Collaborative Cross Mice , Quantitative Trait Loci , Animals , Diet, High-Fat/adverse effects , Female , Genetic Predisposition to Disease , Male , Mice , Obesity/genetics
9.
Bioinformatics ; 36(18): 4817-4818, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32614448

ABSTRACT

SUMMARY: Advances in single-cell technologies have enabled the investigation of T-cell phenotypes and repertoires at unprecedented resolution and scale. Bioinformatic methods for the efficient analysis of these large-scale datasets are instrumental for advancing our understanding of adaptive immune responses. However, while well-established solutions are accessible for the processing of single-cell transcriptomes, no streamlined pipelines are available for the comprehensive characterization of T-cell receptors. Here, we propose single-cell immune repertoires in Python (Scirpy), a scalable Python toolkit that provides simplified access to the analysis and visualization of immune repertoires from single cells and seamless integration with transcriptomic data. AVAILABILITY AND IMPLEMENTATION: Scirpy source code and documentation are available at https://github.com/icbi-lab/scirpy. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Computational Biology , Software , Documentation , Receptors, Antigen, T-Cell
10.
Bioinformatics ; 36(7): 2260-2261, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31755900

ABSTRACT

SUMMARY: Gene fusions can generate immunogenic neoantigens that mediate anticancer immune responses. However, their computational prediction from RNA sequencing (RNA-seq) data requires deep bioinformatics expertise to assembly a computational workflow covering the prediction of: fusion transcripts, their translated proteins and peptides, Human Leukocyte Antigen (HLA) types, and peptide-HLA binding affinity. Here, we present NeoFuse, a computational pipeline for the prediction of fusion neoantigens from tumor RNA-seq data. NeoFuse can be applied to cancer patients' RNA-seq data to identify fusion neoantigens that might expand the repertoire of suitable targets for immunotherapy. AVAILABILITY AND IMPLEMENTATION: NeoFuse source code and documentation are available under GPLv3 license at https://icbi.i-med.ac.at/NeoFuse/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Antigens, Neoplasm , RNA , High-Throughput Nucleotide Sequencing , Humans , Sequence Analysis, RNA , Software , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...