Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 22(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35161779

ABSTRACT

This work presents a detailed review of the development of distributed acoustic sensors (DAS) and their newest scientific applications. It covers most areas of human activities, such as the engineering, material, and humanitarian sciences, geophysics, culture, biology, and applied mechanics. It also provides the theoretical basis for most well-known DAS techniques and unveils the features that characterize each particular group of applications. After providing a summary of research achievements, the paper develops an initial perspective of the future work and determines the most promising DAS technologies that should be improved.


Subject(s)
Acoustics , Fiber Optic Technology , Humans
2.
Sensors (Basel) ; 21(20)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34696075

ABSTRACT

Self-injection locking to an external fiber cavity is an efficient technique enabling drastic linewidth narrowing of semiconductor lasers. Recently, we constructed a simple dual-frequency laser source that employs self-injection locking of a DFB laser in the external ring fiber cavity and Brillouin lasing in the same cavity. The laser performance characteristics are on the level of the laser modules commonly used with BOTDA. The use of a laser source operating two frequencies strongly locked through the Brillouin resonance simplifies the BOTDA system, avoiding the use of a broadband electrooptical modulator (EOM) and high-frequency electronics. Here, in a direct comparison with the commercial BOTDA, we explore the capacity of our low-cost solution for BOTDA sensing, demonstrating distributed measurements of the Brillouin frequency shift in a 10 km sensing fiber with a 1.5 m spatial resolution.

3.
Opt Express ; 28(25): 37322-37333, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33379569

ABSTRACT

Low-noise lasers are a powerful tool in precision spectroscopy, displacement measurements, and development of advanced optical atomic clocks. While all applications benefit from lower frequency noise and robust design, some of them also require lasing at two frequencies. Here, we introduce a simple dual-frequency laser leveraging a ring fiber cavity exploited both for self-injection locking of a standard semiconductor distributed feedback (DFB) laser and for generation of Stokes light via stimulated Brillouin scattering. In contrast to the previous laser configurations, the system is supplied by a low-bandwidth active optoelectronic feedback. Importantly, continuous operation of two mutually locked frequencies is provided by self-injection locking, while the active feedback loop is used just to support this regime. The fiber configuration reduces the natural Lorentzian linewidth of light emitted by the laser at pump and Stokes frequencies down to 270 Hz and 110 Hz, respectively, and features a stable 300-Hz-width RF spectrum recorded with beating of two laser outputs. Translating the proposed laser design to integrated photonics will dramatically reduce cost and footprint for many laser applications such as ultra-high capacity fiber and data center networks, atomic clocks, and microwave photonics.

4.
Opt Express ; 28(1): 478-484, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-32118973

ABSTRACT

Self-injection locking to an external fiber cavity is an efficient technique enabling drastic linewidth narrowing and self-stabilization of semiconductor lasers. The main drawback of this technique is its high sensitivity to fluctuations of the configuration parameters and surroundings. In the proposed laser configuration, to the best our knowledge, for the first time the self-injection locking mechanism is used in conjunction with a simple active optoelectronic feedback, ensuring stable mode-hopping free laser operation in a single longitudinal mode. Locking to 4-m length fiber resonator causes a drastic narrowing of the DFB laser linewidth down to 2.8 kHz and a reduction of the laser phase noise by three orders of magnitude. We have explored key features of the laser dynamics with and without active feedback, revealing stability and tunability of the laser linewidth as an additional benefit of the proposed technique.

5.
Opt Lett ; 42(20): 4207-4210, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-29028049

ABSTRACT

Dynamic population inversion gratings induced in an active medium by counter-propagating optical fields may have a reverse effect on writing laser radiation via feedback they provide. In this Letter we report, to the best of our knowledge, on the first demonstration of an open-cavity fiber laser in which the distributed feedback is provided by a dynamic grating "written" in a Yb-doped active fiber, either by an external source or self-induced via a weak (∼0.1%) reflection from an angle-cleaved fiber end. It has been shown that meters-long dynamic grating is formed with a narrow bandwidth (<50 MHz) and a relatively high-reflection coefficient (>7%) securing single-frequency operation, but the subsequent hole-burning effects accompanied by new grating formation lead to the switching from one longitudinal mode to another. providing a regular pulse-mode dynamics. As a result, periodically generated pulse trains cover a spectrum range of several terahertz delivering millions of cavity modes in sequent pulses.

6.
Opt Lett ; 40(15): 3671-4, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26258385

ABSTRACT

Short pulses are generated by mode-locking techniques: amplitude modulation in time domain or frequency modulation in frequency domain. Direct Fourier synthesis of radiation from several single-frequency sources offers an opportunity to generate arbitrary waveforms. Here we report on a new technique of short-pulse synthesis in the Fourier domain. Instead of independent laser sources, we use a single multimode laser with retrieval of its individual cavity modes into a time sequence coherently combined in an external cavity. Combination of 20 consequent single-mode pulses has been performed, demonstrating a new way for arbitrary waveforms synthesis.

7.
Opt Lett ; 38(14): 2528-30, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23939102

ABSTRACT

We report a simple technical solution for precise adjustment of short fiber cavities commonly used with Brillouin fiber lasers. The technique is based on recording the Brillouin response of the cavity to the frequency scanned laser radiation. The recorded traces are used to calculate the excess cavity length that needs to be removed from the original cavity to provide its precise adjustment to the Brillouin resonance at any preselected pump laser wavelength. The adjusted laser cavity is simultaneously resonant for pump and Stokes radiation. For demonstration of the approach, fine adjustment of a 4 m long ring cavity based on standard Corning SMF-28 fiber is performed.

8.
Opt Express ; 20(5): 5783-8, 2012 Feb 27.
Article in English | MEDLINE | ID: mdl-22418384

ABSTRACT

A new method for describing the Stimulated Brillouin Scattering (SBS) generated in a fiber ring resonator in dynamic regime is presented. Neglecting the time derivatives of the fields amplitudes, our modeling method describes the lasers steady-state operations as well as their transient characteristics or pulsed emission. The developed approach has shown a very good agreement between the theoretical predictions given by the SBS model and the experimental results.


Subject(s)
Algorithms , Fiber Optic Technology/instrumentation , Models, Theoretical , Refractometry/instrumentation , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
9.
Opt Lett ; 34(22): 3574-6, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-19927215

ABSTRACT

We propose a simple all-fiber solution for coherent beam combining of Er-doped fiber amplifiers. This method, which we believe to be a new method, employs the effect of refractive index changes in Yb-doped fibers induced at approximately 1.55 microm by optical pumping at approximately 980 nm, which is performed for an active phase control in the fiber configuration. An algorithm based on population inversion in a two-level system supports the straightforward implementation of the effect into a feedback loop. Combining two 500 mW Er-doped amplifiers in a single-mode fiber is successfully demonstrated with control by approximately 120 mW laser diode. The method is shown to operate against the acoustic phase noise within the range of approximately pi rad and with a rate of approximately 2.6 pi rad/ms that potentially serves combining of at least 50 amplifiers similar to those used in practical work.

10.
Opt Express ; 16(17): 12658-63, 2008 Aug 18.
Article in English | MEDLINE | ID: mdl-18711503

ABSTRACT

We quantify the refractive index changes (RIC) in single-mode ytterbium-doped optical fibers induced by optical pulses at 980 nm and, for the first time, report details of the effect dynamics. The RIC dynamics is shown to follow that of the population of the excited/unexcited ion states with a factor proportional to their polarizability difference (PD). The absolute PD value is evaluated in the spectral range of 1460-1620 nm for different fiber samples and is found to be independent on the fiber geometry and on the ion concentration. The PD dispersion profile indicates to a predominant far-resonance UV rather than near-resonant IR transitions contribution to the RIC.


Subject(s)
Computer-Aided Design , Fiber Optic Technology/instrumentation , Lasers, Semiconductor , Lasers, Solid-State , Models, Theoretical , Refractometry/instrumentation , Computer Simulation , Equipment Design , Equipment Failure Analysis , Light , Optical Fibers , Scattering, Radiation
11.
Opt Express ; 15(8): 4419-26, 2007 Apr 16.
Article in English | MEDLINE | ID: mdl-19532689

ABSTRACT

We present observations of quasi-phase matched parametric fluorescence in a periodically poled twin-hole silica fiber. The phase matching condition in the fiber enables the generation of a degenerate signal field in the fiber-optic communication band centered on 1556 nm. We performed coincidence measurements and a Hong-Ou-Mandel experiment to validate that the signal arises from photon pairs. A coincidence peak with a signal to noise ratio (SNR) of 4 using 43 mW of pump power and a Hong-Ou-Mandel dip showing 40% net visibility were measured. Moreover, the experiments were performed with standard single mode fibers spliced at both ends of the poled section, which makes this source easy to integrate in fiber-optic quantum communication applications.

12.
Opt Lett ; 31(18): 2675-7, 2006 Sep 15.
Article in English | MEDLINE | ID: mdl-16936854

ABSTRACT

We report what is to our knowledge the first photochemical fabrication of a long-period grating in a pure-fused-silica photonic crystal fiber. The inscription technique is based on a two-photon absorption mechanism and does not require a specially designed photonic crystal fiber with a photosensitive Ge-doped core. The characteristic fluence value for the inscription is an order of magnitude less than that for a standard telecom fiber irradiated under similar conditions with the same grating parameters.

13.
Opt Lett ; 31(11): 1621-3, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16688240

ABSTRACT

Brillouin mirrors based on a single-mode optical fiber provide the simplest, completely passive, and most universal way to produce nanosecond pulses with extensive wavelength tunability. We propose an all-fiber solution, where a passively Q-switched Er-doped Briilouin fiber laser pumped by a low-power laser diode produces pulses with a peak/average power contrast of 500 W/25 mW and, in association with a conventional dispersion-shifted fiber employed as an extracavity nonlinear medium, causes the generation of a nanosecond supercontinuum extending from 900 to over 1800 nm. Expanding evolution of the spectrum kicked off by the multicascade Brillouin process is reported.

14.
Opt Express ; 14(18): 8328-35, 2006 Sep 04.
Article in English | MEDLINE | ID: mdl-19529209

ABSTRACT

We present experimental and theoretical investigation of intensity noise features in SBS for experimental configuration utilized injection locking of two semiconductor lasers for Stokes signal generation. Significant decreasing of the intensity noise of the Stokes signal with the frequency equal to the Brillouin resonance is observed and analytically explained.

15.
Opt Lett ; 29(10): 1078-80, 2004 May 15.
Article in English | MEDLINE | ID: mdl-15181991

ABSTRACT

Backward light scattering can cause passive Q switching in fiber lasers. We propose a self-consistent description of the laser dynamics. Our model quantitatively reproduces the temporal structure of pulsation and is also attractive for analysis of laser stability and statistics. The validity of the model is directly verified in an experiment.

16.
Opt Lett ; 27(2): 83-5, 2002 Jan 15.
Article in English | MEDLINE | ID: mdl-18007719

ABSTRACT

We performed numerical simulations to obtain statistical and spectral characteristics of stimulated Brillouin scattering (SBS) initiated by Gaussian noise in single-mode optical fibers. Recently published experimental spectra of SBS power [e.g., Phys. Rev. Lett. 85, 1879 (2000)] are explained completely by a one-dimensional SBS model. We give a clear physical insight into the problem and, for what is to our knowledge the first time, reveal how the probability function of Stokes power, the power-correlation function, and the SBS spectra evolve as key parameters of the model vary, leading to a modification of Stokes field statistics.

SELECTION OF CITATIONS
SEARCH DETAIL
...