Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Med ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641750

ABSTRACT

Although B cells are implicated in multiple sclerosis (MS) pathophysiology, a predictive or diagnostic autoantibody remains elusive. In this study, the Department of Defense Serum Repository (DoDSR), a cohort of over 10 million individuals, was used to generate whole-proteome autoantibody profiles of hundreds of patients with MS (PwMS) years before and subsequently after MS onset. This analysis defines a unique cluster in approximately 10% of PwMS who share an autoantibody signature against a common motif that has similarity with many human pathogens. These patients exhibit antibody reactivity years before developing MS symptoms and have higher levels of serum neurofilament light (sNfL) compared to other PwMS. Furthermore, this profile is preserved over time, providing molecular evidence for an immunologically active preclinical period years before clinical onset. This autoantibody reactivity was validated in samples from a separate incident MS cohort in both cerebrospinal fluid and serum, where it is highly specific for patients eventually diagnosed with MS. This signature is a starting point for further immunological characterization of this MS patient subset and may be clinically useful as an antigen-specific biomarker for high-risk patients with clinically or radiologically isolated neuroinflammatory syndromes.

2.
medRxiv ; 2023 May 15.
Article in English | MEDLINE | ID: mdl-37205595

ABSTRACT

Although B cells are implicated in multiple sclerosis (MS) pathophysiology, a predictive or diagnostic autoantibody remains elusive. Here, the Department of Defense Serum Repository (DoDSR), a cohort of over 10 million individuals, was used to generate whole-proteome autoantibody profiles of hundreds of patients with MS (PwMS) years before and subsequently after MS onset. This analysis defines a unique cluster of PwMS that share an autoantibody signature against a common motif that has similarity with many human pathogens. These patients exhibit antibody reactivity years before developing MS symptoms and have higher levels of serum neurofilament light (sNfL) compared to other PwMS. Furthermore, this profile is preserved over time, providing molecular evidence for an immunologically active prodromal period years before clinical onset. This autoantibody reactivity was validated in samples from a separate incident MS cohort in both cerebrospinal fluid (CSF) and serum, where it is highly specific for patients eventually diagnosed with MS. This signature is a starting point for further immunological characterization of this MS patient subset and may be clinically useful as an antigen-specific biomarker for high-risk patients with clinically- or radiologically-isolated neuroinflammatory syndromes.

3.
Emerg Infect Dis ; 29(1): 197-201, 2023 01.
Article in English | MEDLINE | ID: mdl-36573629

ABSTRACT

A patient in California, USA, with rare and usually fatal Balamuthia mandrillaris granulomatous amebic encephalitis survived after receiving treatment with a regimen that included the repurposed drug nitroxoline. Nitroxoline, which is a quinolone typically used to treat urinary tract infections, was identified in a screen for drugs with amebicidal activity against Balamuthia.


Subject(s)
Amebiasis , Balamuthia mandrillaris , Infectious Encephalitis , Humans , Amebiasis/drug therapy , Granuloma , Brain
4.
Nature ; 591(7849): 312-316, 2021 03.
Article in English | MEDLINE | ID: mdl-33442060

ABSTRACT

Endogenous retroviruses (ERVs) are abundant and heterogenous groups of integrated retroviral sequences that affect genome regulation and cell physiology throughout their RNA-centred life cycle1. Failure to repress ERVs is associated with cancer, infertility, senescence and neurodegenerative diseases2,3. Here, using an unbiased genome-scale CRISPR knockout screen in mouse embryonic stem cells, we identify m6A RNA methylation as a way to restrict ERVs. Methylation of ERV mRNAs is catalysed by the complex of methyltransferase-like METTL3-METTL144 proteins, and we found that depletion of METTL3-METTL14, along with their accessory subunits WTAP and ZC3H13, led to increased mRNA abundance of intracisternal A-particles (IAPs) and related ERVK elements specifically, by targeting their 5' untranslated region. Using controlled auxin-dependent degradation of the METTL3-METTL14 enzymatic complex, we showed that IAP mRNA and protein abundance is dynamically and inversely correlated with m6A catalysis. By monitoring chromatin states and mRNA stability upon METTL3-METTL14 double depletion, we found that m6A methylation mainly acts by reducing the half-life of IAP mRNA, and this occurs by the recruitment of the YTHDF family of m6A reader proteins5. Together, our results indicate that RNA methylation provides a protective effect in maintaining cellular integrity by clearing reactive ERV-derived RNA species, which may be especially important when transcriptional silencing is less stringent.


Subject(s)
Endogenous Retroviruses/genetics , Genes, Intracisternal A-Particle/genetics , Methylation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Animals , CRISPR-Cas Systems/genetics , Cell Cycle Proteins/metabolism , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Gene Knockout Techniques , Half-Life , Methyltransferases/metabolism , Mice , Mouse Embryonic Stem Cells , Nuclear Proteins/metabolism , RNA Splicing Factors/metabolism , RNA Stability , RNA, Messenger/chemistry , RNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...