Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mass Spectrom Adv Clin Lab ; 25: 19-26, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35734440

ABSTRACT

Introduction: The measurement of insulin and C-peptide provides a valuable tool for the clinical evaluation of hypoglycemia. In research, these biomarkers are used together to better understand hyperinsulinemia, hepatic insulin clearance, and beta cell function. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is an attractive approach for the analysis of insulin and C-peptide because the platform is specific, can avoid certain limitations of immunoassays, and can be multiplexed. Previously described LC-MS/MS methods for the simultaneous quantification of insulin and C-peptide measure the intact analytes and most have relied on immunoaffinity enrichment. These approaches can be limited in terms of sensitivity and interference from auto-antibodies, respectively. We have developed a novel method that does not require antibodies and uses proteolytic digestion to yield readily ionizable proteotypic peptides that enables the sensitive, specific, and simultaneous quantitation of insulin and C-peptide. Methods: Serum samples were precipitated with acetonitrile. Analytes were enriched using solid phase extraction and then digested with endoproteinase Glu-C. Surrogate peptides for insulin and C-peptide were analyzed using targeted LC-MS/MS. Results: Inter-day imprecision was below 20 %CV and linearity was observed down to the lower limit of quantitation for both analytes (insulin = 0.09 ng/mL, C-peptide = 0.06 ng/mL). Comparison to a commercially available insulin immunoassay (Beckman Coulter UniCel DxI 600 Access) revealed a 30% bias between methods. Conclusion: A novel LC-MS/MS method for the simultaneous analysis of insulin and C-peptide using Glu-C digestion was developed and evaluated. A detailed standard operating procedure is provided to help facilitate implementation in other laboratories.

2.
J Mass Spectrom Adv Clin Lab ; 19: 1-6, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34723236

ABSTRACT

INTRODUCTION: C-peptide is used as a marker of endogenous insulin secretion in the assessment of residual ß-cell function in diabetes and in the diagnostic workup of hypoglycemia. Previously developed LC-MS/MS methods to quantify serum concentrations of C-peptide have monitored intact peptide, which ionizes poorly. As a result, methods have leveraged immunoaffinity enrichment or two-dimensional chromatography. In this study, we aimed to use proteolysis during sample preparation to enhance the sensitivity of traditional LC-MS/MS. METHODS: Due to the absence of arginine and lysine residues in C-peptide, we utilized Glu-C as the proteolytic enzyme in the method. After protein precipitation using acetonitrile and solid phase extraction with mixed anion exchange, lower molecular weight polypeptides were reduced, alkylated, and proteolyzed. The two amino-terminal peptide fragments, EAEDLQVGQVE and LGGGPGAGSLQPLALE, were monitored using multiple reaction monitoring in positive ion mode (Acquity ULPC-Xevo TQ-S, Waters). The former peptide was used for quantification and the latter for quality assurance. RESULTS: Glu-C was determined to be a reliable proteolytic enzyme with monotonic digestion kinetics. The assay was linear between 0.1 and 15 ng/mL and had a lower limit of quantification of 0.06 ng/mL. Total imprecision was 7.7 %CV and long-term imprecision at 0.16 ng/mL was 10.0%. Spike-recovery experiments demonstrated a mean recovery of 98.2 % (± 9.1 %) and the method compared favorably with a commercially available immunoassay and a reference measurement procedure. CONCLUSION: Protein precipitation with solid phase extraction and proteolysis with Glu-C is a robust sample preparation method for quantification of C-peptide in human serum by LC-MS/MS.

SELECTION OF CITATIONS
SEARCH DETAIL
...