Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Vet Surg ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747194

ABSTRACT

OBJECTIVE: The objective of this study was to assess whether negative pressure could be maintained accurately and repeatably with a wall-suction-based hybrid negative pressure wound therapy (h-NPWT) system by comparing it with a commercial negative pressure wound therapy (NPWT) device. STUDY DESIGN: In vitro experimental study. METHODS: A commercial NPWT device (control) and three h-NPWT devices, with 0, 3, and 6 meters of additional tubing using the hospital-wall suction (groups 1, 2, and 3 respectively), were applied sequentially to a commercial NPWT dressing on a silicone skin substrate and set to run at a continuous pressure of -125 mmHg. The pressure within the wound space was monitored at 10 second intervals for 24 h. The process was repeated five times for each group. RESULTS: The commercial NPWT device produced an average pressure variance of 3.02 mmHg, and the h-NPWT produced average variances of 4.38, 4.24 and 4.20 mmHg for groups 1, 2 and 3, respectively. All groups produced an average pressure within 0.15 mmHg of -125 mmHg over the 24-hour period, and the h-NPWT systems produced the smallest range with all values remaining within a ±5% variation from -125 mmHg. CONCLUSION: The h-NPWT system achieved negative pressures that were comparable to those of a commercial control NPWT device. The addition of tubing between the skin substrate and the canister did not affect the pressure applied at the wound site. CLINICAL SIGNIFICANCE: The h-NPWT device tested in this study can be considered as an alternative for negative wound therapy when a commercial device cannot be used.

2.
BMC Plant Biol ; 24(1): 354, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693487

ABSTRACT

BACKGROUND: Aspergillus flavus is an important agricultural and food safety threat due to its production of carcinogenic aflatoxins. It has high level of genetic diversity that is adapted to various environments. Recently, we reported two reference genomes of A. flavus isolates, AF13 (MAT1-2 and highly aflatoxigenic isolate) and NRRL3357 (MAT1-1 and moderate aflatoxin producer). Where, an insertion of 310 kb in AF13 included an aflatoxin producing gene bZIP transcription factor, named atfC. Observations of significant genomic variants between these isolates of contrasting phenotypes prompted an investigation into variation among other agricultural isolates of A. flavus with the goal of discovering novel genes potentially associated with aflatoxin production regulation. Present study was designed with three main objectives: (1) collection of large number of A. flavus isolates from diverse sources including maize plants and field soils; (2) whole genome sequencing of collected isolates and development of a pangenome; and (3) pangenome-wide association study (Pan-GWAS) to identify novel secondary metabolite cluster genes. RESULTS: Pangenome analysis of 346 A. flavus isolates identified a total of 17,855 unique orthologous gene clusters, with mere 41% (7,315) core genes and 59% (10,540) accessory genes indicating accumulation of high genomic diversity during domestication. 5,994 orthologous gene clusters in accessory genome not annotated in either the A. flavus AF13 or NRRL3357 reference genomes. Pan-genome wide association analysis of the genomic variations identified 391 significant associated pan-genes associated with aflatoxin production. Interestingly, most of the significantly associated pan-genes (94%; 369 associations) belonged to accessory genome indicating that genome expansion has resulted in the incorporation of new genes associated with aflatoxin and other secondary metabolites. CONCLUSION: In summary, this study provides complete pangenome framework for the species of Aspergillus flavus along with associated genes for pathogen survival and aflatoxin production. The large accessory genome indicated large genome diversity in the species A. flavus, however AflaPan is a closed pangenome represents optimum diversity of species A. flavus. Most importantly, the newly identified aflatoxin producing gene clusters will be a new source for seeking aflatoxin mitigation strategies and needs new attention in research.


Subject(s)
Aflatoxins , Aspergillus flavus , Genome, Fungal , Multigene Family , Secondary Metabolism , Aspergillus flavus/genetics , Aspergillus flavus/metabolism , Aflatoxins/genetics , Aflatoxins/metabolism , Secondary Metabolism/genetics , Zea mays/microbiology , Zea mays/genetics , Genome-Wide Association Study , Genes, Fungal , Whole Genome Sequencing , Genetic Variation
3.
Phytopathology ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669464

ABSTRACT

Identification of candidate genes and molecular markers for late leaf spot (LLS) disease resistance in peanut (Arachis hypogaea) has been a focus of molecular breeding for the U.S. industry funded peanut genome project. Efforts have been hindered by limited mapping resolution due to low levels of genetic recombination and marker density available in traditional biparental mapping populations. To address this, a multi-parental nested association mapping (NAM) population has been genotyped with the peanut 58 K SNP array and phenotyped for LLS severity in the field for three years. Joint linkage-based QTL mapping identified nine QTLs for LLS resistance with significant phenotypic variance explained (PVE) up to 47.7%. A genome-wide association study (GWAS) identified 13 SNPs consistently associated with LLS resistance. Two genomic regions harboring the consistent QTLs and SNPs were identified from 1,336 Kb to 1,520 Kb (184 Kb) on chromosome B02 and from 1,026.9 Kb to 1,793.2 Kb (767 Kb) on chromosome B03, designated as peanut late leaf spot resistance loci, PLLSR-1 and PLLSR-2, respectively. PLLSR-1 contains 10 NBS-LRR disease resistant genes. An NBS-LRR disease resistance gene Arahy.VKVT6A was also identified on homoeologous chromosome A02. PLLSR-2 contains five significant SNPs associated with five different genes encoding callose synthase, pollen defective in guidance protein, pentatricopeptide repeat (PPR), acyl-activating enzyme, and C2 GRAM domains-containing protein. This study highlights the power of multi-parent populations such as NAM for genetic mapping and marker-trait association studies in peanuts. Validation of these two LLS resistance loci will be needed for marker-assisted breeding.

4.
Int J Food Microbiol ; 416: 110661, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38457888

ABSTRACT

Aspergillus flavus and its toxic metabolites-aflatoxins infect and contaminate maize kernels, posing a threat to grain safety and human health. Due to the complexity of microbial growth and metabolic processes, dynamic mechanisms among fungal growth, nutrient depletion of maize kernels and aflatoxin production is still unclear. In this study, visible/near infrared (Vis/NIR) hyperspectral imaging (HSI) combined with the scanning electron microscope (SEM) was used to elucidate the critical organismal interaction at kernel (macro-) and microscopic levels. As kernel damage is the main entrance for fungal invasion, maize kernels with gradually aggravated damages from intact to pierced to halved kernels with A. flavus were cultured for 0-120 h. The spectral fingerprints of the A. flavus-maize kernel complex over time were analyzed with principal components analysis (PCA) of hyperspectral images, where the pseudo-color score maps and the loading plots of the first three PCs were used to investigate the dynamic process of fungal infection and to capture the subtle changes in the complex with different hardness of the maize matrix. The dynamic growth process of A. flavus and the interactions of fungus-maize complexes were explained on a microscopic level using SEM. Specifically, fungus morphology, e.g., hyphae, conidia, and conidiophore (stipe) was accurately captured on the microscopic level, and the interaction process between A. flavus and nutrient loss from the maize kernel tissues (i.e., embryo, and endosperm) was described. Furthermore, the growth stage discrimination models based on PLSDA with the results of CCRC = 100 %, CCRV = 97 %, CCRIV = 93 %, and the prediction models of AFB1 based on PLSR with satisfactory performance (R2C = 0.96, R2V = 0.95, R2IV = 0.93 and RPD = 3.58) were both achieved. In conclusion, the results from both macro-level (Vis/NIR-HSI) and micro-level (SEM) assessments revealed the dynamic organismal interactions in A. flavus-maize kernel complex, and the detailed data could be used for modeling, and quantitative prediction of aflatoxin, which would establish a theoretical foundation for the early detection of fungal or toxin contaminated grains to ensure food security.


Subject(s)
Aflatoxins , Aspergillus flavus , Humans , Aspergillus flavus/metabolism , Zea mays/microbiology , Hyperspectral Imaging , Technology
5.
Plant Biotechnol J ; 22(6): 1504-1515, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38206288

ABSTRACT

Professor Rajeev K. Varshney's transformative impact on crop genomics, genetics, and agriculture is the result of his passion, dedication, and unyielding commitment to harnessing the potential of genomics to address the most pressing challenges faced by the global agricultural community. Starting from a small town in India and reaching the global stage, Professor Varshney's academic and professional trajectory has inspired many scientists active in research today. His ground-breaking work, especially his effort to list orphan tropical crops to genomic resource-rich entities, has been transformative. Beyond his scientific achievements, Professor Varshney is recognized by his colleagues as an exemplary mentor, fostering the growth of future researchers, building institutional capacity, and strengthening scientific capability. His focus on translational genomics and strengthening seed system in developing countries for the improvement of agriculture has made a tangible impact on farmers' lives. His skills have been best utilized in roles at leading research centres where he has applied his expertise to deliver a new vision for crop improvement. These efforts have now been recognized by the Royal Society with the award of the Fellowship (FRS). As we mark this significant milestone in his career, we not only celebrate Professor Varshney's accomplishments but also his wider contributions that continue to transform the agricultural landscape.


Subject(s)
Crops, Agricultural , Genomics , History, 20th Century , History, 21st Century , Crops, Agricultural/genetics , Agriculture/history , Societies, Scientific
6.
Foods ; 13(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38201185

ABSTRACT

A nondestructive and rapid classification approach was developed for identifying aflatoxin-contaminated single peanut kernels using field-portable vibrational spectroscopy instruments (FT-IR and Raman). Single peanut kernels were either spiked with an aflatoxin solution (30 ppb-400 ppb) or hexane (control), and their spectra were collected via Raman and FT-IR. An uHPLC-MS/MS approach was used to verify the spiking accuracy via determining actual aflatoxin content on the surface of randomly selected peanut samples. Supervised classification using soft independent modeling of class analogies (SIMCA) showed better discrimination between aflatoxin-contaminated (30 ppb-400 ppb) and control peanuts with FT-IR compared with Raman, predicting the external validation samples with 100% accuracy. The accuracy, sensitivity, and specificity of SIMCA models generated with the portable FT-IR device outperformed the methods in other destructive studies reported in the literature, using a variety of vibrational spectroscopy benchtop systems. The discriminating power analysis showed that the bands corresponded to the C=C stretching vibrations of the ring structures of aflatoxins were most significant in explaining the variance in the model, which were also reported for Aspergillus-infected brown rice samples. Field-deployable vibrational spectroscopy devices can enable in situ identification of aflatoxin-contaminated peanuts to assure regulatory compliance as well as cost savings in the production of peanut products.

7.
Front Vet Sci ; 10: 1072929, 2023.
Article in English | MEDLINE | ID: mdl-36923052

ABSTRACT

Introduction: On-farm biosecurity is an essential component of successful disease management in the beef cattle industry on an individual, regional, and national level. Participation in mandatory or voluntary assurance schemes, knowledge and trusted relationships have all been demonstrated to contribute to the development of behaviors that promote biosecurity. However, compliance with rules, socio-psychological relationships and knowledge-seeking behavior are all contingent upon the motivations and beliefs of the individual. It is widely accepted that the motivations and beliefs of all cultures can be defined by ten basic values (Self-direction, Stimulation, Hedonism, Achievement, Power, Security, Conformity, Tradition, Benevolence and Universalism). In this study, we use the ten basic values to characterize the on-farm biosecurity behaviors of Australian beef farmers to facilitate the identification of interventions that are most likely to align with producer motivations and therefore, more likely to result in wider adoption of effective on-farm biosecurity. Methods: Semi-structured interviews were conducted with 11 Australian beef farmers to discuss the reasons behind decisions to alter or implement biosecurity practices in response to endemic diseases. Thematic analysis was used to identify the motivations, opportunities, and capability of biosecurity behaviors. The ten basic human values were used to characterize these behaviors and inform enablers and barriers to biosecurity adoption. Results and discussion: Benevolence and Self-direction, relating to self-transcendence and an openness to change, were the principal values associated with good biosecurity behaviors. This suggests that farmers will be receptive to education strategies that communicate the actual risk of disease in their area, the impact of disease on animal welfare, and the ability for on-farm biosecurity to mitigate these impacts. Farmers also expressed values of Security which entrenched behaviors as common practice; however, in some cases the Security of trusted relationships was identified as a potential barrier to behavior change. Overall, values associated with biosecurity behaviors were found to align with values that are most important for social cohesion, suggesting that collaborative disease efforts between industry stakeholders and farmers are likely to succeed if designed with these values in mind.

8.
Prev Vet Med ; 210: 105813, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36495705

ABSTRACT

Effective on-farm biosecurity measures are crucial to the post-border protection of emerging agricultural diseases and are the foundation of endemic disease control. Implementation of on-farm biosecurity measures are contingent on the priorities of individual producers, which can often be neglected for other aspects of the farming enterprise. The on-farm approach to prevention of endemic diseases, like bovine viral diarrhoea virus (BVDV), is inconsistent between farms and it is not realistic to assume that farmers take an entirely normative approach to on-farm decision making. Multi-criteria decision analysis (MCDA) has been used for disease prioritisation and national disease control in human and animal health; however, it is yet to be used as a decision tool for disease control at the farm level. This study used MCDA to determine the most appropriate biosecurity combinations for management of BVDV, based on the preferences of Australian beef producers. Beef producer preferences were obtained from an online survey using indirect collection methods. Point of truth calibration was used to aggregate producer preferences and the performance scores of 23 biosecurity combinations for control of BVDV based on four main criteria: the probability of BVDV introduction, the on-farm impact of BVDV, the off-farm impact of BVDV and the annual input cost of the practice. The MCDA found that biosecurity combinations that included "double-fencing farm boundaries" used in conjunction with "vaccination against BVDV" were most appropriate for management of BVDV in an initially naïve, self-replacing seasonal single-calving beef herd over a 15-year period. Beef producers prioritised practices that preserved the on-farm health of their cattle more than any other criteria, a finding that was persistent regardless of demographic or farming type. Consequently, combinations with "vaccination against BVDV" were consistently ranked higher than those that included "strategic exposure of a persistently infected cow," which is sometimes used by Australian beef producers instead of vaccination. Findings of this study indicate that the benefits of "double-fencing farm boundaries" and "vaccination against BVDV" outweigh the relatively high cost associated with these practices based on the priorities of the Australian beef producer and may be used to demonstrate the benefits of on-farm biosecurity during discussions between livestock veterinarians and beef farmers.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Diarrhea Viruses, Bovine Viral , Female , Humans , Cattle , Animals , Australia , Farms , Farmers , Endemic Diseases/prevention & control , Endemic Diseases/veterinary , Biosecurity , Animal Husbandry/methods , Bovine Virus Diarrhea-Mucosal Disease/epidemiology
9.
Hortic Res ; 9: uhac154, 2022.
Article in English | MEDLINE | ID: mdl-36133672

ABSTRACT

CRISPR-mediated genome editing has become a powerful tool for the genetic modification of biological traits. However, developing an efficient, site-specific, gene knock-in system based on homology-directed DNA repair (HDR) remains a significant challenge in plants, especially in woody species like poplar. Here, we show that simultaneous inhibition of non-homologous end joining (NHEJ) recombination cofactor XRCC4 and overexpression of HDR enhancer factors CtIP and MRE11 can improve HDR efficiency for gene knock-in. Using this approach, the BleoR gene was integrated onto the 3' end of the MKK2 MAP kinase gene to generate a BleoR-MKK2 fusion protein. Based on fully edited nucleotides evaluated by TaqMan real-time PCR, the HDR-mediated knock-in efficiency was up to 48% when using XRCC4 silencing incorporated with a combination of CtIP and MRE11 overexpression compared with no HDR enhancement or NHEJ silencing. Furthermore, this combination of HDR enhancer overexpression and NHEJ repression also increased genome targeting efficiency and gave 7-fold fewer CRISPR-induced insertions and deletions (InDels), resulting in no functional effects on MKK2-based salt stress responses in poplar. Therefore, this approach may be useful not only in poplar and plants or crops but also in mammals for improving CRISPR-mediated gene knock-in efficiency.

10.
Prev Vet Med ; 208: 105758, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36130460

ABSTRACT

Bovine viral diarrhoea virus (BVDV) is a disease of global importance, affecting the production and welfare of cattle enterprises through poor reproductive performance and calf mortality. In Australia, the prevention of BVDV introduction and spread is primarily achieved with on-farm biosecurity; however, the use of these practices can vary amongst producers. Economic utility is commonly identified as a contributor to the uptake of on-farm biosecurity, but other factors such as animal welfare, producer priorities and introduction risk also influence farmer behaviour. This study uses an individual-based, stochastic simulation model to examine the economic and non-economic value of 23 on-farm biosecurity combinations for the control of BVDV in Australian beef farms without (N0) and with (N1) a neighbouring population of persistently infected (PI) cattle. Combinations of quarantine of purchased bulls (Q), hygiene during herd health events (H), double-fencing adjacent boundaries with neighbouring farms (F) and vaccination against BVDV (V) were tested. This study is the first to simulate the use of strategic PI exposure (PI) as an alternative to V, a contentious practice performed by some Australian beef farmers. Introduction of BVDV into a naïve 300-breeder self-replacing beef herd was achieved through the purchase of PI bulls (N0 and N1 herds) and over-the-fence contact with neighbouring PI animals (N1 herds only). The predicted median cumulative loss due to BVDV over a 15-year period was AUD$172/breeder and AUD$453/breeder for an N0 and N1 herd, respectively. Early establishment of BVDV in the simulation period was found to be the primary factor contributing to economic loss. Consequently, the Q and QF combinations resulted in the highest predicted average annual cost-benefit for BVDV-free N0 and N1 herds. In the five years following establishment of BVDV, use of QP (N0 herds) and V (N1 herds) combinations were most cost-effective. Combinations that involved V and P (in conjunction with F in N1 herds) also resulted in the lowest number of PI animals sold to other farms or feedlots over the simulation period. However, in both N0 and N1 herds, P resulted in the highest number of infected cattle, which has implications for poor animal welfare and increased antimicrobial use on Australian beef farms. The outcomes reported in this study can guide decisions to prevent BVDV introduction and spread on extensive beef farms using on-farm biosecurity, based on the risk of BVDV exposure and the priorities of the individual farmer.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Cattle Diseases , Diarrhea Viruses, Bovine Viral , Cattle , Animals , Male , Bovine Virus Diarrhea-Mucosal Disease/epidemiology , Farms , Biosecurity , Australia , Diarrhea/veterinary , Cattle Diseases/prevention & control
11.
Phytopathology ; 112(10): 2044-2051, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35502928

ABSTRACT

For many plant-pathogenic or endophytic fungi, production of mycotoxins, which are toxic to humans, may present a fitness gain. However, associations between mycotoxin production and plant pathogenicity or virulence is inconsistent and difficult due to the complexity of these host-pathogen interactions and the influences of environmental and insect factors. Aflatoxin receives a lot of attention due to its potent toxicity and carcinogenicity but the connection between aflatoxin production and pathogenicity is complicated by the pathogenic ability and prevalence of nonaflatoxigenic isolates in crops. Other toxins directly aid fungi in planta, trichothecenes are important virulence factors, and ergot alkaloids limit herbivory and fungal consumption due to insect toxicity. We review a panel discussion at the American Phytopathological Society's Plant Health 2021 conference, which gathered diverse experts representing different research sectors, career stages, ethnicities, and genders to discuss the diverse roles of mycotoxins in the lifestyles of filamentous fungi of the families Clavicipitaceae, Trichocomaceae (Eurotiales), and Nectriaceae (Hypocreales).


Subject(s)
Aflatoxins , Ergot Alkaloids , Mycotoxins , Trichothecenes , Ecosystem , Female , Fungi , Humans , Male , Mycotoxins/toxicity , Plant Diseases , Virulence Factors
12.
Food Chem ; 382: 132340, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35139463

ABSTRACT

The dynamics mechanisms regulating the growth and AFB1 production of Aspergillus flavus during its interactions with maize kernels remain unclear. In this study, shortwave infrared hyperspectral imaging (SWIR-HSI) and synchrotron radiation Fourier transform infrared (SR-FTIR) microspectroscopy were combined to investigate chemical and spatial-temporal changes in incremental damaged maize kernels induced by A. flavus infection at macroscopic and microscopic levels. SWIR-HSI was employed to extract spectral information of A. flavus growth and quantitatively detect AFB1 levels. Satisfactory full-spectrum models and simplified multispectral models were obtained respectively by partial least squares regression (PLSR) for three types of samples. Furthermore, SR-FTIR microspectroscopy coupled with two-dimensional correlation spectroscopy (2DCOS) was utilized to reveal the possible sequence of dynamic changes of nutrient loss and trace AFB1 in maize kernels. It exhibited new insights on how to quantify the spatio-temporal patterns of fungal infection and AFB1 accumulation on maize and provided theoretical basis for online sorting.


Subject(s)
Aflatoxin B1 , Aspergillus flavus , Hyperspectral Imaging , Spectroscopy, Fourier Transform Infrared , Synchrotrons , Zea mays/chemistry
14.
Front Vet Sci ; 8: 795575, 2021.
Article in English | MEDLINE | ID: mdl-34970621

ABSTRACT

Bovine viral diarrhea virus (BVDV) is an economically important disease in Australian beef farming. The disease typically results in low-level production losses that can be difficult to detect for several years. Simulation modeling can be used to support the decision to control BVDV; however, current BVDV simulation models do not adequately reflect the extensive farming environment of Australian beef production. Therefore, the objective of this study was to develop a disease simulation model to explore the impact of BVDV on beef cattle production in south-east Australia. A dynamic, individual-based, stochastic, discrete-time simulation model was created to simulate within-herd transmission of BVDV in a seasonal, self-replacing beef herd. We used the model to simulate the effect of herd size and BVDV introduction time on disease transmission and assessed the short- and long-term impact of BVDV on production outputs that influence the economic performance of beef farms. We found that BVDV can become established in a herd after a single PI introduction in 60% of cases, most frequently associated with the breeding period. The initial impact of BVDV will be more severe in smaller herds, although self-elimination is more likely in small herds than in larger herds, in which there is a 23% chance that the virus can persist for >15 years following a single incursion in a herd with 800 breeders. The number and weight of steers sold was reduced in the presence of BVDV and the results demonstrated that repeat incursions exacerbate long-term production losses, even when annual losses appear marginal. This model reflects the short- and long-term production losses attributed to BVDV in beef herds in southeast Australia and provides a foundation from which the influence and economic utility of BVDV prevention in Australian beef herds can be assessed.

15.
J Fungi (Basel) ; 7(6)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073230

ABSTRACT

Pre-harvest aflatoxin contamination (PAC) in groundnut is a serious quality concern globally, and drought stress before harvest further exacerbate its intensity, leading to the deterioration of produce quality. Understanding the host-pathogen interaction and identifying the candidate genes responsible for resistance to PAC will provide insights into the defense mechanism of the groundnut. In this context, about 971.63 million reads have been generated from 16 RNA samples under controlled and Aspergillus flavus infected conditions, from one susceptible and seven resistant genotypes. The RNA-seq analysis identified 45,336 genome-wide transcripts under control and infected conditions. This study identified 57 transcription factor (TF) families with major contributions from 6570 genes coding for bHLH (719), MYB-related (479), NAC (437), FAR1 family protein (320), and a few other families. In the host (groundnut), defense-related genes such as senescence-associated proteins, resveratrol synthase, seed linoleate, pathogenesis-related proteins, peroxidases, glutathione-S-transferases, chalcone synthase, ABA-responsive gene, and chitinases were found to be differentially expressed among resistant genotypes as compared to susceptible genotypes. This study also indicated the vital role of ABA-responsive ABR17, which co-regulates the genes of ABA responsive elements during drought stress, while providing resistance against A. flavus infection. It belongs to the PR-10 class and is also present in several plant-pathogen interactions.

16.
J Fungi (Basel) ; 6(4)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339393

ABSTRACT

Aflatoxin-affected groundnut or peanut presents a major global health issue to both commercial and subsistence farming. Therefore, understanding the genetic and molecular mechanisms associated with resistance to aflatoxin production during host-pathogen interactions is crucial for breeding groundnut cultivars with minimal level of aflatoxin contamination. Here, we performed gene expression profiling to better understand the mechanisms involved in reduction and prevention of aflatoxin contamination resulting from Aspergillus flavus infection in groundnut seeds. RNA sequencing (RNA-Seq) of 16 samples from different time points during infection (24 h, 48 h, 72 h and the 7th day after inoculation) in U 4-7-5 (resistant) and JL 24 (susceptible) genotypes yielded 840.5 million raw reads with an average of 52.5 million reads per sample. A total of 1779 unique differentially expressed genes (DEGs) were identified. Furthermore, comprehensive analysis revealed several pathways, such as disease resistance, hormone biosynthetic signaling, flavonoid biosynthesis, reactive oxygen species (ROS) detoxifying, cell wall metabolism and catabolizing and seed germination. We also detected several highly upregulated transcription factors, such as ARF, DBB, MYB, NAC and C2H2 in the resistant genotype in comparison to the susceptible genotype after inoculation. Moreover, RNA-Seq analysis suggested the occurrence of coordinated control of key pathways controlling cellular physiology and metabolism upon A. flavus infection, resulting in reduced aflatoxin production.

17.
Microbiol Resour Announc ; 9(37)2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32912903

ABSTRACT

Aspergillus flavus and Aspergillus parasiticus produce carcinogenic aflatoxins during crop infection, with extensive variations in production among isolates, ranging from atoxigenic to highly toxigenic. Here, we report draft genome sequences of one A. parasiticus isolate and nine A. flavus isolates from field environments for use in comparative, functional, and phylogenetic studies.

18.
G3 (Bethesda) ; 10(10): 3515-3531, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32817124

ABSTRACT

Efforts in genome sequencing in the Aspergillus genus have led to the development of quality reference genomes for several important species including A. nidulans, A. fumigatus, and A. oryzae However, less progress has been made for A. flavus As part of the effort of the USDA-ARS Annual Aflatoxin Workshop Fungal Genome Project, the isolate NRRL3357 was sequenced and resulted in a scaffold-level genome released in 2005. Our goal has been biologically driven, focusing on two areas: isolate variation in aflatoxin production and drought stress exacerbating aflatoxin production by A. flavus Therefore, we developed two reference pseudomolecule genome assemblies derived from chromosome arms for two isolates: AF13, a MAT1-2, highly stress tolerant, and highly aflatoxigenic isolate; and NRRL3357, a MAT1-1, less stress tolerant, and moderate aflatoxin producer in comparison to AF13. Here, we report these two reference-grade assemblies for these isolates through a combination of PacBio long-read sequencing and optical mapping, and coupled them with comparative, functional, and phylogenetic analyses. This analysis resulted in the identification of 153 and 45 unique genes in AF13 and NRRL3357, respectively. We also confirmed the presence of a unique 310 Kb insertion in AF13 containing 60 genes. Analysis of this insertion revealed the presence of a bZIP transcription factor, named atfC, which may contribute to isolate pathogenicity and stress tolerance. Phylogenomic analyses comparing these and other available assemblies also suggest that the species complex of A. flavus is polyphyletic.


Subject(s)
Aflatoxins , Aspergillus flavus , Aspergillus flavus/genetics , Base Sequence , Genome, Fungal , Phylogeny
19.
Front Microbiol ; 11: 227, 2020.
Article in English | MEDLINE | ID: mdl-32194520

ABSTRACT

Aflatoxins are secondary metabolites produced by soilborne saprophytic fungus Aspergillus flavus and closely related species that infect several agricultural commodities including groundnut and maize. The consumption of contaminated commodities adversely affects the health of humans and livestock. Aflatoxin contamination also causes significant economic and financial losses to producers. Research efforts and significant progress have been made in the past three decades to understand the genetic behavior, molecular mechanisms, as well as the detailed biology of host-pathogen interactions. A range of omics approaches have facilitated better understanding of the resistance mechanisms and identified pathways involved during host-pathogen interactions. Most of such studies were however undertaken in groundnut and maize. Current efforts are geared toward harnessing knowledge on host-pathogen interactions and crop resistant factors that control aflatoxin contamination. This study provides a summary of the recent progress made in enhancing the understanding of the functional biology and molecular mechanisms associated with host-pathogen interactions during aflatoxin contamination in groundnut and maize.

20.
Plant Biotechnol J ; 18(6): 1457-1471, 2020 06.
Article in English | MEDLINE | ID: mdl-31808273

ABSTRACT

Multiparental genetic mapping populations such as nested-association mapping (NAM) have great potential for investigating quantitative traits and associated genomic regions leading to rapid discovery of candidate genes and markers. To demonstrate the utility and power of this approach, two NAM populations, NAM_Tifrunner and NAM_Florida-07, were used for dissecting genetic control of 100-pod weight (PW) and 100-seed weight (SW) in peanut. Two high-density SNP-based genetic maps were constructed with 3341 loci and 2668 loci for NAM_Tifrunner and NAM_Florida-07, respectively. The quantitative trait locus (QTL) analysis identified 12 and 8 major effect QTLs for PW and SW, respectively, in NAM_Tifrunner, and 13 and 11 major effect QTLs for PW and SW, respectively, in NAM_Florida-07. Most of the QTLs associated with PW and SW were mapped on the chromosomes A05, A06, B05 and B06. A genomewide association study (GWAS) analysis identified 19 and 28 highly significant SNP-trait associations (STAs) in NAM_Tifrunner and 11 and 17 STAs in NAM_Florida-07 for PW and SW, respectively. These significant STAs were co-localized, suggesting that PW and SW are co-regulated by several candidate genes identified on chromosomes A05, A06, B05, and B06. This study demonstrates the utility of NAM population for genetic dissection of complex traits and performing high-resolution trait mapping in peanut.


Subject(s)
Arachis , Quantitative Trait Loci , Arachis/genetics , Chromosome Mapping , Genetic Linkage , Genome-Wide Association Study , Phenotype , Quantitative Trait Loci/genetics , Seeds/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...