Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters











Publication year range
1.
Phys Chem Chem Phys ; 26(31): 21163-21172, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39072495

ABSTRACT

The competition between host-guest binding and solvent interactions is a crucial factor in determining the binding affinities and selectivity of molecular receptor species. The interplay between these competing interactions, however, have been difficult to disentangle. In particular, the development of molecular-level descriptions of solute-solvent interactions remains a grand experimental challenge. Herein, we investigate the prototypical halide receptor meso-octamethylcalix[4]pyrrole (OMCP) complexed with either chloride or bromide anions in both dichloromethane (DCM) and chloroform (trichloromethane, TCM) solvent using ultrafast infrared transient absorption and 2D IR spectroscopies. OMCP·Br- complexes in both solvents display slower vibrational relaxation dynamics of the OMCP pyrrole NH stretches, consistent with weaker H-bonding interactions with OMCP compared to chloride and less efficient intermolecular relaxation to the solvent. Further, OMCP·Br- complexes show nearly static spectral diffusion dynamics compared to OMCP·Cl-, indicating larger structural fluctuations occur within chloride complexes. Importantly, distinct differences in the vibrational spectra and dynamics are observed between DCM and TCM solutions. The data are consistent with stronger and more perturbative solvent effects in TCM compared to DCM, despite DCM's larger dielectric constant and smaller reported OMCP·X- binding affinities. These differences are attributed to the presence of weak H-bond interactions between halides and TCM, in addition to competing interactions from the bulky tetrabutylammonium countercation. The data provide important experimental benchmarks for quantifying the role of solvent and countercation interactions in anion host-guest complexes.

2.
J Phys Chem Lett ; 14(43): 9683-9689, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37871134

ABSTRACT

Two-dimensional infrared (2D IR) spectroscopy of mass-selected, cryogenically cooled molecular ions is presented. Nonlinear response pathways, encoded in the time-domain photodissociation action response of weakly bound N2 messenger tags, were isolated using pulse shaping techniques following excitation with four collinear ultrafast IR pulses. 2D IR spectra of Re(CO)3(CH3CN)3+ ions capture off-diagonal cross-peak bleach signals between the asymmetric and symmetric carbonyl stretching transitions. These cross peaks display intensity variations as a function of pump-probe delay time due to coherent coupling between the vibrational modes. Well-resolved 2D IR features in the congested fingerprint region of protonated caffeine (C8H10N4O2H+) are also reported. Importantly, intense cross-peak signals were observed at 3 ps waiting time, indicating that tag-loss dynamics are not competing with the measured nonlinear signals. These demonstrations pave the way for more precise studies of molecular interactions and dynamics that are not easily obtainable with current condensed-phase methodologies.

3.
J Phys Chem A ; 127(44): 9258-9272, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37882618

ABSTRACT

The vibrational signatures and ultrafast dynamics of the intramolecular H-bond in a series of ß-diketones are investigated with 2D IR spectroscopy and computational modeling. The chosen ß-diketones exhibit a range of H atom donor-acceptor distances and asymmetry along the H atom transfer coordinate that tunes the intramolecular H-bond strength. The species with the strongest H-bonds are calculated to have very soft H atom potentials, resulting in highly red-shifted OH stretch fundamental frequencies and dislocation of the H atom upon vibrational excitation. These soft potentials lead to significant coupling to the other normal mode coordinates and give rise to the very broad vibrational signatures observed experimentally. The 2D IR spectra in both the OH and OD stretch regions of the light and deuterated isotopologues reveal broadened and long-lived ground-state bleach signatures of the vibrationally hot molecules. Polarization-sensitive transient absorption measurements in the OH and OD stretch regions reveal notable isotopic differences in orientational dynamics. Orientational relaxation was measured to occur on ∼600 fs and ∼2 ps time scales for the light and deuterated isotopologues, respectively. The orientational dynamics are interpreted in terms of activated H/D atom transfer events driven by collective intramolecular structural rearrangements.

4.
J Chem Phys ; 159(4)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37486043

ABSTRACT

Ultrafast transient vibrational action spectra of cryogenically cooled Re(CO)3(CH3CN)3+ ions are presented. Nonlinear spectra were collected in the time domain by monitoring the photodissociation of a weakly bound N2 messenger tag as a function of delay times and phases between a set of three infrared pulses. Frequency-resolved spectra in the carbonyl stretch region show relatively strong bleaching signals that oscillate at the difference frequency between the two observed vibrational features as a function of the pump-probe waiting time. This observation is consistent with the presence of nonlinear pathways resulting from underlying cross-peak signals between the coupled symmetric-asymmetric C≡O stretch pair. The successful demonstration of frequency-resolved ultrafast transient vibrational action spectroscopy of dilute molecular ion ensembles provides an exciting, new framework for the study of molecular dynamics in isolated, complex molecular ion systems.

5.
BioDrugs ; 37(4): 521-530, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37166707

ABSTRACT

BACKGROUND: Chimeric antigen receptor T (CAR-T) cells have proven to be a game changer for treating several hematologic malignancies. Randomized controlled trials have highlighted potential life-threatening adverse drug reactions (ADRs), including cytokine release syndrome (CRS). Acute renal failure (ARF) has also been reported in 20% of the patients treated. However, an analysis of renal safety supported by large-scale real-life data seems warranted. PATIENTS AND METHODS: We queried VigiBase® for all reports of the Standardised MedDRA Query "acute renal failure" (ARF) involving a CAR-T cell, registered until 24 July 2022. Disproportionality for this ADR was analyzed through calculation of the Information Component [IC (95% confidence interval)]. A positive lower end of the 95% confidence interval of the IC is the threshold used in statistical signal detection in VigiBase®. The same analysis was carried out for various hydroelectrolytic disorders. RESULTS: We gathered 224 reports of ARF, and 125 reports of hydroelectrolytic disorders involving CAR-T cells. CAR-T cells were disproportionately reported with ARF [IC 1.5 (1.3-1.7)], even after excluding reports mentioning CRS. A significant disproportionate reporting was also found for hypernatremia [IC 3.1 (2.2-3.8)], hyperphosphatemia [IC 3.1 (1.8-3.9)], hypophosphatemia [IC 2.0 (0.6-2.9)], metabolic acidosis [IC 1.8 (1.2-2.2)], hyponatremia [IC 1.6 (1.1-2.0)], and hypercalcemia [IC 1.4 (0.5-2.1)]. There was no disproportionate reporting of dyskalemia. CONCLUSIONS: This study is limited by the inherent flaws of pharmacovigilance approaches. Nonetheless, our findings suggest that ARF and an array of hydroelectrolytic disorders are potential ADRs of CAR-T cell therapy, in real-life settings and in a nonselected population.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Receptors, Chimeric Antigen , Renal Insufficiency , Humans , Pharmacovigilance , Kidney , World Health Organization
6.
J Phys Chem A ; 127(15): 3362-3371, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37026976

ABSTRACT

Phenol-benzimidazole and phenol-pyridine proton-coupled electron transfer (PCET) dyad systems are computationally investigated to resolve the origins of the asymmetrically broadened H-bonded OH stretch transitions that have been previously reported using cryogenic ion vibrational spectroscopy in the ground electronic state. Two-dimensional (2D) potentials describing the strongly shared H atom are predicted to be very shallow along the H atom transfer coordinate, enabling dislocation of the H atom between the donor and acceptor groups upon excitation of the OH vibrational modes. These soft H atom potentials result in strong coupling between the OH modes, which exhibit significant bend-stretch mixing, and a large number of normal mode coordinates. Vibrational spectra are calculated using a Hamiltonian that linearly and quadratically couples the H atom potentials to over two dozen of the most strongly coupled normal modes treated at the harmonic level. The calculated vibrational spectra qualitatively reproduce the asymmetric shape and breadth of the experimentally observed bands in the 2300-3000 cm-1 range. Interestingly, these transitions fall well above the predicted OH stretch fundamentals, which are computed to be surprisingly red-shifted (<2000 cm-1). Time-dependent calculations predict rapid (<100 fs) relaxation of the excited OH modes and instant response from the lower-frequency normal modes, corroborating the strong coupling predicted by the model Hamiltonian. The results highlight a unique broadening mechanism and complicated anharmonic effects present within these biologically relevant PCET model systems.

7.
J Chem Phys ; 157(15): 154308, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36272778

ABSTRACT

Phenol-benzimidazole and phenol-pyridine dyad complexes have served as popular model systems for the study of proton-coupled electron transfer (PCET) kinetics in solution-phase experiments. Interpretation of measured PCET rates in terms of key structural parameters, such as the H-bond donor-acceptor distance, however, remains challenging. Herein, we report vibrational spectra in the electronic ground state for a series of phenol-benzimidazole and phenol-pyridine complexes isolated and cryogenically cooled in an ion trap. The four models studied each display highly red-shifted and broadened OH stretching transitions that arise from strong H-bonding interactions between the phenol OH group and the basic N site on benzimidazole/pyridine rings. The OH stretch transition in each model displays relatively strong absorption onsets near 2500 cm-1 with broad shoulders that extend asymmetrically to higher frequencies over hundreds of wavenumbers. In contrast, the deuterated isotopologues yield much weaker OD stretch transitions that appear symmetrically broadened. The spectral breadth and shape of the OD stretch transitions are ascribed to variations in OD stretch frequencies that arise from zero-point distributions in the proton donor-acceptor low-frequency soft mode vibration. The asymmetric structure of the OH stretch transitions is attributed to a set of combination bands between the OH stretch and a series of low-frequency H-bond soft modes. The spectra and modeling highlight the importance of OH stretch-soft mode couplings, which are thought to play important roles in PCET and proton transfer dynamics.


Subject(s)
Protons , Vibration , Electrons , Phenol/chemistry , Pyridines , Benzimidazoles
8.
Med Trop Sante Int ; 2(1)2022 03 31.
Article in French | MEDLINE | ID: mdl-35685842

ABSTRACT

Background and objectives: Recent shark attacks in New Caledonia have prompted local authorities to elaborate a risk-management plan. The objective of the present paper is to produce detailed data on shark attacks that occurred in New Caledonian waters for the last few decades, as well as on the injuries of the victims, in order to inform rescue and medical services as well as authorities in charge of educating the public and providing security. Methods: Incidents involving sharks and humans in New Caledonia for the last six decades were included into a database. Sharks were tentatively identified to species according to the shape, size and other external characteristics of injuries to the victims, together with witness accounts. The severity of shark bites was evaluated against the scale proposed by A.K. Lentz and co-authors (Am Surg. 2010;76:101-6). Results: Sixty-seven shark-attack cases were recorded in New Caledonia from 1958 to 2020, of which 13 were lethal. The majority of the attacks concerned spearfishers and freedivers collecting invertebrates (58.5% of total). In the last decades, shark attacks may have increased towards bathers, swimmers and snorkelers (18.5%), and people taking part in water sports including surf, kitesurf, windsurf and SUP foil (14%). One scuba diver was also attacked (1.5%). Twenty attacks including 8 lethal ones were ascribed to the tiger shark Galeocerdo cuvier; 14 attacks including 2 lethal ones to the bull shark Carcharhinus leucas; 2 attacks including 1 lethal to the great white shark Carcharodon carcharías. The lethality of attacks was almost one in five, above the global average. Conclusions: Feeding incentive appeared to be a frequent factor triggering attacks. The education of the public should be promoted as a preventive measure aiming to reduce the risk of such accidents.


Subject(s)
Bites and Stings , Sharks , Animals , Bites and Stings/epidemiology , Humans , New Caledonia/epidemiology , Seafood
9.
Wilderness Environ Med ; 33(3): 332-336, 2022 09.
Article in English | MEDLINE | ID: mdl-35718645

ABSTRACT

Herein we report an unprovoked shark attack on a scuba diver in New Caledonia. The species responsible for the attack was identified as a tiger shark (Galeocerdo cuvier), based on both the victim's testimony and forensic examination. The victim suffered significant loss of soft tissues from one thigh, which resulted in hemorrhagic shock. Even though the event occurred at a remote location, miles away from the nearest hospital, appropriate first aid, immediate deployment of an alert system, and prompt helicopter transfer by an emergency rescue team allowed the victim to be transferred to an intensive care unit in stable condition and to undergo surgery within 4 h of being bitten. Early coverage of exposed bone was performed, followed up with negative pressure dressing, antibiotic treatment, hyperbaric oxygen therapy, and a split skin graft. In spite of the massive muscular loss incurred, the victim was able to regain her ability to walk within 6 wk of the incident. Shark attacks on scuba divers are rare and seldom reported, especially in New Caledonia.


Subject(s)
Bites and Stings , Hyperbaric Oxygenation , Sharks , Animals , Bites and Stings/epidemiology , Bites and Stings/therapy , Female , New Caledonia
10.
J Phys Chem B ; 126(19): 3551-3562, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35536173

ABSTRACT

Acetylacetone (AcAc) has proven to be a fruitful but highly challenging model system for the experimental and computational interrogation of strong intramolecular hydrogen bonds. Key questions remain, however, regarding the identity of the minimum-energy structure of AcAc and the dynamics of intramolecular proton transfer. Here, we investigate the OH/OD stretch and bend regions of the enol tautomer of AcAc and its deuterated isotopologue with transient absorption and 2D IR spectroscopy. The OH bend region reveals a single dominant diagonal transition near 1625 cm-1 with intense cross peaks to lower-frequency modes, demonstrating highly mixed fingerprint transitions that contain OH bend character. The anharmonic coupling of the OH bend results in a highly elongated OH bend excited-state absorption transition that indicates a large manifold of OH bend overtone/combination bands in the OH stretch region that leads to strong bend-stretch Fermi resonance interactions. The OH and OD stretch regions consist of broad ground-state bleach signals, but there is no clear evidence of ω21 excited-state absorptions due to rapid population relaxation arising from strong intramolecular coupling to bending, fingerprint, and low-frequency H-bond modes. Orientational relaxation dynamics persist for timescales longer than the vibrational lifetimes, with polarization anisotropy components decaying within approximately 2 and 10 periods of the O-O oscillation for the OH and OD stretch, respectively. The significant isotopic dependence of the orientational dynamics is discussed in the context of intramolecular mode coupling, diffusional processes, and contributions from proton/deuteron transfer dynamics.


Subject(s)
Protons , Vibration , Hydrogen Bonding , Pentanones , Spectrum Analysis
11.
J Phys Chem A ; 125(47): 10235-10244, 2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34788043

ABSTRACT

Herein, we present the initial steps toward developing a framework that will enable the characterization of photoinitiated dynamics within large molecular ions in the gas phase with temporal and energy resolution. We combine the established techniques of tag-loss action spectroscopy on cryogenically trapped molecular ions with ultrafast vibrational spectroscopy by measuring the linear action spectrum of N2-tagged protonated diglycine (GlyGlyH+·N2) with an ultrafast infrared (IR) pulse pair. The presented time-domain data demonstrate that the excited-state vibrational populations in the tagged parent ions are modulated by the ultrafast IR pulse pair and encoded through the messenger tag-loss action response. The Fourier transform of the time-domain action interferograms yields the linear frequency-domain vibrational spectrum of the ion ensemble, and we show that this spectrum matches the linear spectrum collected in a traditional manner using a frequency-resolved IR laser. Time- and frequency-domain interpretations of the data are considered and discussed. Finally, we demonstrate the acquisition of nonlinear signals through cross-polarization pump-probe experiments. These results validate the prerequisite first steps of combining tag-loss action spectroscopy with two-dimensional IR spectroscopy for probing dynamics in gas-phase molecular ions.

12.
J Phys Chem A ; 125(42): 9288-9297, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34652915

ABSTRACT

Hydrogen-bonding interactions within a series of phenol-benzimidazole model proton-coupled electron transfer (PCET) dyad complexes are characterized using cryogenic ion vibrational spectroscopy. A highly red-shifted and surprisingly broad (>1000 cm-1) transition is observed in one of the models and assigned to the phenolic OH stretch strongly H-bonded to the N(3) benzimidazole atom. The breadth is attributed to a combination of anharmonic Fermi-resonance coupling between the OH stretch and background doorway states involving OH bending modes and strong coupling of the OH stretch frequency to structural deformations along the proton-transfer coordinate accessible at the vibrational zero-point level. The other models show unexpected protonation of the benzimidazole group upon electrospray ionization instead of at more basic remote amine/amide groups. This leads to the formation of HO-+HN(3) H-bond motifs that are much weaker than the OH-N(3) H-bond arrangement. H-bonding between the N(1)H+ benzimidazole group and the carbonyl on the tyrosine backbone is the stronger and preferred interaction in these complexes. The results show that conjugation effects, secondary H-bond interactions, and H-bond soft modes strongly influence the OH-N(3) interaction and highlight the importance of the direct monitoring of proton stretch transitions in characterizing the proton-transfer reaction coordinate in PCET systems.

13.
Spine Deform ; 9(6): 1633-1639, 2021 11.
Article in English | MEDLINE | ID: mdl-34212306

ABSTRACT

STUDY DESIGN: Long-term cross-sectional study. OBJECTIVES: To investigate the long-term effects of untreated Scheuermann's kyphosis on quality of life, and its relationship to radiographic parameters of spinal deformity. Previous studies reported reduced self-image, increased pain and impaired physical status. Little is known of the long-term impact of sagittal plane deformity in untreated SK. METHODS: One hundred and thirteen consecutive untreated patients with SK were identified from a national service database prior to 2000, when surgery was not offered at this unit. 81 of these patients were available for evaluation; 66 (81%) consented to questionnaire and clinical evaluation, and 47 (58%) consented to additional radiological evaluation. Health-related quality of life (HRQoL) was compared to normative population values. Mean age was 45.1 years (31-65), and mean follow-up was 27 years (16-36). 57 patients had thoracic kyphosis and 9 had thoracolumbar deformity. RESULTS: SRS-22 and SF-36 scores were lower, and ODI was greater in patients with untreated SK compared to normative population values. Kyphosis progressed from mean 66° at skeletal maturity to 78° (p < 0.001) after mean follow-up of 27 years. Long-term progression of untreated SK was 0.45°/year (n = 47). Multilinear regression showed good correlation between increasing SVA and worse ODI scores (r = 0.59; p = 0.001). Increasing SVA also correlated with worse function, pain and mental health scores reported by SRS-22, and with worse physical function and bodily pain scores reported by SF-36. Increasing CL correlated with worse SF-36 physical function scores. Increasing cSVA and increasing TK correlated with worse SRS-22 self-image scores. CONCLUSION: SRS-22 and SF-36 scores were lower, and ODI was greater in patients with untreated SK compared to normative data. Long-term progression of untreated SK was 0.45°/year (n = 47). Increasing SVA correlated with worse SF-36 physical function, SRS-22 function, SRS-22 pain and higher ODI scores. Total kyphosis (TK) and cSVA were independent predictors of low SRS self-image. LEVEL OF EVIDENCE: III.


Subject(s)
Scheuermann Disease , Cross-Sectional Studies , Follow-Up Studies , Humans , Middle Aged , Quality of Life , Retrospective Studies , Scheuermann Disease/complications , Scheuermann Disease/diagnostic imaging
14.
J Chem Phys ; 151(3): 034501, 2019 Jul 21.
Article in English | MEDLINE | ID: mdl-31325917

ABSTRACT

Aqueous proton transport is uniquely rapid among aqueous processes, mediated by fluctuating hydrogen bond reorganization in liquid water. In a process known as Grotthuss diffusion, the excess charge diffuses primarily by sequential proton transfers between water molecules rather than standard Brownian motion, which explains the anomalously high electrical conductivity of acidic solutions. Employing ultrafast IR spectroscopy, we use the orientational anisotropy decay of the bending vibrations of the hydrated proton complex to study the picosecond aqueous proton transfer kinetics as a function of temperature, concentration, and counterion. We find that the orientational anisotropy decay exhibits Arrhenius behavior, with an apparent activation energy of 2.4 kcal/mol in 1M and 2M HCl. Interestingly, acidic solutions at high concentration with longer proton transfer time scales display corresponding decreases in activation energy. We interpret this counterintuitive trend by considering the entropic and enthalpic contributions to the activation free energy for proton transfer. Halide counteranions at high concentrations impose entropic barriers to proton transfer in the form of constraints on the solution's collective H-bond fluctuations and obstruction of potential proton transfer pathways. The corresponding proton transfer barrier decreases due to weaker water-halide H-bonds in close proximity to the excess proton, but the entropic effects dominate and result in a net reduction in the proton transfer rate. We estimate the activation free energy for proton transfer as ∼1.0 kcal/mol at 280 K.

15.
J Phys Chem B ; 123(1): 225-238, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30521750

ABSTRACT

Ion-ion interactions and ion pairing play an important role in the properties of concentrated electrolyte solutions, yet remain difficult to study due to the heterogeneous and highly dynamic behavior of these systems. In concentrated acid solutions, these questions take on a further level of complexity because the structure of the aqueous proton itself is uncertain and may be influenced by the counterion. Here, we address these questions by studying the IR spectra of nitric acid as a function of concentration in H2O and comparing these to the spectra of several alkali nitrate salts. We show how the close proximity between cations and NO3- ions in solution at high concentration affect the IR spectra and therefore the molecular structures. Using two-dimensional IR spectroscopy, we demonstrate the formation of contracted ion pair configurations in nitric acid solutions between NO3- ions and H+(aq) via the observation of a distinct anisotropic intermolecular crosspeak between these species. By studying the concentration dependence of this spectral feature, we show that this ion-paired configuration exists in solution at concentrations as low as 2 M and suggests that the structure of H+(aq) solvation complex in these ion pairs differs from the structure in bulk solution.

16.
Nat Chem ; 10(9): 932-937, 2018 09.
Article in English | MEDLINE | ID: mdl-30061612

ABSTRACT

Given the critical role of the aqueous excess proton in redox chemistry, determining its structure and the mechanism of its transport in water are intense areas of experimental and theoretical research. The ultrafast dynamics of the proton's hydration structure has made it extremely challenging to study experimentally. Using ultrafast broadband two-dimensional infrared spectroscopy, we show that the vibrational spectrum of the aqueous proton is fully consistent with a protonated water complex broadly defined as a Zundel-like H5O2+ motif. Analysis of the inhomogeneously broadened proton stretch two-dimensional lineshape indicates an intrinsically asymmetric, low-barrier O-H+-O potential that exhibits surprisingly persistent distributions in both its asymmetry and O-O distance. This structural characterization has direct implications for the extent of delocalization exhibited by a proton's excess charge and for the possible mechanisms of proton transport in water.

17.
J Phys Chem B ; 122(10): 2792-2802, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29452488

ABSTRACT

Aqueous proton transport involves the ultrafast interconversion of hydrated proton species that are closely linked to the hydrogen bond dynamics of water, which has been a long-standing challenge to experiments. In this study, we use ultrafast IR spectroscopy to investigate the distinct vibrational transition centered at 1750 cm-1 in strong acid solutions, which arises from bending vibrations of the hydrated proton complex. Broadband ultrafast two-dimensional IR spectroscopy and transient absorption are used to measure vibrational relaxation, spectral diffusion, and orientational relaxation dynamics. The hydrated proton bend displays fast vibrational relaxation and spectral diffusion timescales of 200-300 fs; however, the transient absorption anisotropy decays on a remarkably long 2.5 ps timescale, which matches the timescale for hydrogen bond reorganization in liquid water. These observations are indications that the bending vibration of the aqueous proton complex is relatively localized, with an orientation that is insensitive to fast hydrogen bonding fluctuations and dependent on collective structural relaxation of the liquid to reorient. We conclude that the orientational relaxation is a result of proton transfer between configurations that are well described by a Zundel-like proton shared between two flanking water molecules.

18.
Eur Spine J ; 27(5): 1067-1072, 2018 05.
Article in English | MEDLINE | ID: mdl-29030702

ABSTRACT

PURPOSE: Although lumbar spondylolysis is encountered in general population with an incidence estimated to be 3-10%, limited information is available for children. The aim of the study is to determine the prevalence of spondylolysis according to associated vertebral bony malformation and spinopelvic parameters in children under eight requiring CT evaluation for unrelated lumbar conditions. METHODS: Seven hundred and seventeen abdominal and pelvic multi-detector CT scans were obtained in patients under 8 years of age were reviewed. Two board certificated radiologists and two resident radiologists retrospectively evaluated CT scans for lumbar spondylolysis and associated malformations. Pelvic incidence and spondylolisthesis were reported. RESULTS: Our analysis included 717 CT scans in 532 children (259 girls and 273 boys). Twenty-five cases of spondylolysis were diagnosed (16 bilateral and 9 unilateral, 64 and 36%, respectively) in 14 boys (56%) and 11 girls (44%), associating with 12 grade I spondylolisthesis. The mean normal pelvic incidence was 45° (median 44°, SD 7°). The prevalence of spondylolysis was 1% in children under age 3 (n = 3 among 292 patients), 3.7% in children under age 6 (n = 17 among 454 patients) and 4.7% among the 532 patients. Unilateral spondylolysis was significantly associated with a spinal malformation (p = 0.04, Fisher's exact test), with normal pelvic incidence. Half of the patients with bilateral spondylolysis had high pelvic incidence. CONCLUSIONS: We observed a prevalence peak of unilateral spondylolysis in the context of a specific malformation in young infants under age 4 with normal pelvic incidence, and, then, a progressive increase in the prevalence of bilateral isolated spondylolysis.


Subject(s)
Lumbar Vertebrae/diagnostic imaging , Spondylolysis/diagnostic imaging , Spondylolysis/epidemiology , Child , Female , Humans , Lumbar Vertebrae/pathology , Male , Prevalence , Retrospective Studies , Spondylolysis/pathology , Tomography, X-Ray Computed
19.
J Chem Phys ; 147(8): 084503, 2017 Aug 28.
Article in English | MEDLINE | ID: mdl-28863511

ABSTRACT

Liquid water's rich sub-picosecond vibrational dynamics arise from the interplay of different high- and low-frequency modes evolving in a strong yet fluctuating hydrogen bond network. Recent studies of the OH stretching excitations of H2O indicate that they are delocalized over several molecules, raising questions about whether the bending vibrations are similarly delocalized. In this paper, we take advantage of an improved 50 fs time-resolution and broadband infrared (IR) spectroscopy to interrogate the 2D IR lineshape and spectral dynamics of the HOH bending vibration of liquid H2O. Indications of strong bend-stretch coupling are observed in early time 2D IR spectra through a broad excited state absorption that extends from 1500 cm-1 to beyond 1900 cm-1, which corresponds to transitions from the bend to the bend overtone and OH stretching band between 3150 and 3550 cm-1. Pump-probe measurements reveal a fast 180 fs vibrational relaxation time, which results in a hot-ground state spectrum that is the same as observed for water IR excitation at any other frequency. The fastest dynamical time scale is 80 fs for the polarization anisotropy decay, providing evidence for the delocalized or excitonic character of the bend. Normal mode analysis conducted on water clusters extracted from molecular dynamics simulations corroborate significant stretch-bend mixing and indicate delocalization of δHOH on 2-7 water molecules.

20.
J Chem Phys ; 146(15): 154507, 2017 Apr 21.
Article in English | MEDLINE | ID: mdl-28433032

ABSTRACT

The local environmental sensitivity of infrared (IR) spectroscopy to a hydrogen-bonding structure makes it a powerful tool for investigating the structure and dynamics of excess protons in water. Although of significant interest, the line broadening that results from the ultrafast evolution of different solvated proton-water structures makes the assignment of liquid-phase IR spectra a challenging task. In this work, we apply a normal mode analysis using density functional theory of thousands of proton-water clusters taken from reactive molecular dynamics trajectories of the latest generation multistate empirical valence bond proton model (MS-EVB 3.2). These calculations are used to obtain a vibrational density of states and IR spectral density, which are decomposed on the basis of solvated proton structure and the frequency dependent mode character. Decompositions are presented on the basis of the proton sharing parameter δ, often used to distinguish Eigen and Zundel species, the stretch and bend character of the modes, the mode delocalization, and the vibrational mode symmetry. We find there is a wide distribution of vibrational frequencies spanning 1200-3000 cm-1 for every local proton configuration, with the region 2000-2600 cm-1 being mostly governed by the distorted Eigen-like configuration. We find a continuous red shift of the special-pair O⋯H+⋯O stretching frequency, and an increase in the flanking water bending intensity with decreasing δ. Also, we find that the flanking water stretch mode of the Zundel-like species is strongly mixed with the flanking water bend, and the special pair proton oscillation band is strongly coupled with the bend modes of the central H5O2+moiety.

SELECTION OF CITATIONS
SEARCH DETAIL