Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Soc Rev ; 53(10): 4838-4861, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38596888

ABSTRACT

Targeted protein degraders such as PROTACs and molecular glues are a rapidly emerging therapeutic modality within industry and academia. Degraders possess unique mechanisms of action that lead to the removal of specific proteins by co-opting the cell's natural degradation mechanisms via induced proximity. Their optimisation thus far has often been largely empirical, requiring the synthesis and screening of a large number of analogues. In addition, the synthesis and development of degraders is often challenging, leading to lengthy optimisation campaigns to deliver candidate-quality compounds. This review highlights how the synthesis of degraders has evolved in recent years, in particular focusing on means of applying high-throughput chemistry and screening approaches to expedite these timelines, which we anticipate to be valuable in shaping the future of degrader optimisation campaigns.


Subject(s)
Combinatorial Chemistry Techniques , High-Throughput Screening Assays , Proteins/chemistry , Proteins/metabolism , Proteolysis , Small Molecule Libraries/chemistry , Small Molecule Libraries/chemical synthesis
2.
J Med Chem ; 65(22): 15174-15207, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36378954

ABSTRACT

The bromodomain and extra terminal (BET) family of proteins are an integral part of human epigenome regulation, the dysregulation of which is implicated in multiple oncology and inflammatory diseases. Disrupting the BET family bromodomain acetyl-lysine (KAc) histone protein-protein interaction with small-molecule KAc mimetics has proven to be a disease-relevant mechanism of action, and multiple molecules are currently undergoing oncology clinical trials. This work describes an efficiency analysis of published GSK pan-BET bromodomain inhibitors, which drove a strategic choice to focus on the identification of a ligand-efficient KAc mimetic with the hypothesis that lipophilic efficiency could be drastically improved during optimization. This focus drove the discovery of the highly ligand-efficient and structurally distinct benzoazepinone KAc mimetic. Following crystallography to identify suitable growth vectors, the benzoazepinone core was optimized through an explore-exploit structure-activity relationship (SAR) approach while carefully monitoring lipophilic efficiency to deliver I-BET432 (41) as an oral candidate quality molecule.


Subject(s)
Lysine , Transcription Factors , Humans , Lysine/metabolism , Ligands , Protein Domains , Histones/metabolism
3.
ACS Chem Biol ; 16(9): 1644-1653, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34397208

ABSTRACT

Covalent inhibition is a powerful strategy to develop potent and selective small molecule kinase inhibitors. Targeting the conserved catalytic lysine is an attractive method for selective kinase inactivation. We have developed novel, selective inhibitors of phosphoinositide 3-kinase δ (PI3Kδ) which acylate the catalytic lysine, Lys779, using activated esters as the reactive electrophiles. The acylating agents were prepared by adding the activated ester motif to a known selective dihydroisobenzofuran PI3Kδ inhibitor. Three esters were designed, including an acetate ester which was the smallest lysine modification evaluated in this work. Covalent binding to the enzyme was characterized by intact protein mass spectrometry of the PI3Kδ-ester adducts. An enzymatic digest coupled with tandem mass spectrometry identified Lys779 as the covalent binding site, and a biochemical activity assay confirmed that PI3Kδ inhibition was a direct result of covalent lysine acylation. These results indicate that a simple chemical modification such as lysine acetylation is sufficient to inhibit kinase activity. The selectivity of the compounds was evaluated against lipid kinases in cell lysates using a chemoproteomic binding assay. Due to the conserved nature of the catalytic lysine across the kinome, we believe the covalent inhibition strategy presented here could be applicable to a broad range of clinically relevant targets.


Subject(s)
Acrylamides/chemistry , Adenine/analogs & derivatives , Afatinib/chemistry , Aniline Compounds/chemistry , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Lysine/chemistry , Phosphoinositide-3 Kinase Inhibitors/chemistry , Piperidines/chemistry , Acetylation , Acrylamides/metabolism , Adenine/chemistry , Adenine/metabolism , Afatinib/metabolism , Amino Acid Sequence , Aniline Compounds/metabolism , Catalysis , Catalytic Domain , Class I Phosphatidylinositol 3-Kinases/metabolism , Humans , Mass Spectrometry , Molecular Docking Simulation , Phosphoinositide-3 Kinase Inhibitors/metabolism , Piperidines/metabolism , Protein Binding , Protein Conformation , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...