Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
bioRxiv ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38746185

ABSTRACT

The SARS-CoV-2 genome occupies a unique place in infection biology - it is the most highly sequenced genome on earth (making up over 20% of public sequencing datasets) with fine scale information on sampling date and geography, and has been subject to unprecedented intense analysis. As a result, these phylogenetic data are an incredibly valuable resource for science and public health. However, the vast majority of the data was sequenced by tiling amplicons across the full genome, with amplicon schemes that changed over the pandemic as mutations in the viral genome interacted with primer binding sites. In combination with the disparate set of genome assembly workflows and lack of consistent quality control (QC) processes, the current genomes have many systematic errors that have evolved with the virus and amplicon schemes. These errors have significant impacts on the phylogeny, and therefore over the last few years, many thousands of hours of researchers time has been spent in "eyeballing" trees, looking for artefacts, and then patching the tree. Given the huge value of this dataset, we therefore set out to reprocess the complete set of public raw sequence data in a rigorous amplicon-aware manner, and build a cleaner phylogeny. Here we provide a global tree of 3,960,704 samples, built from a consistently assembled set of high quality consensus sequences from all available public data as of March 2023, viewable at https://viridian.taxonium.org. Each genome was constructed using a novel assembly tool called Viridian (https://github.com/iqbal-lab-org/viridian), developed specifically to process amplicon sequence data, eliminating artefactual errors and mask the genome at low quality positions. We provide simulation and empirical validation of the methodology, and quantify the improvement in the phylogeny. Phase 2 of our project will address the fact that the data in the public archives is heavily geographically biased towards the Global North. We therefore have contributed new raw data to ENA/SRA from many countries including Ghana, Thailand, Laos, Sri Lanka, India, Argentina and Singapore. We will incorporate these, along with all public raw data submitted between March 2023 and the current day, into an updated set of assemblies, and phylogeny. We hope the tree, consensus sequences and Viridian will be a valuable resource for researchers.

2.
JAC Antimicrob Resist ; 6(2): dlae037, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38500518

ABSTRACT

Background: Pyrazinamide is one of four first-line antibiotics used to treat tuberculosis; however, antibiotic susceptibility testing for pyrazinamide is challenging. Resistance to pyrazinamide is primarily driven by genetic variation in pncA, encoding an enzyme that converts pyrazinamide into its active form. Methods: We curated a dataset of 664 non-redundant, missense amino acid mutations in PncA with associated high-confidence phenotypes from published studies and then trained three different machine-learning models to predict pyrazinamide resistance. All models had access to a range of protein structural-, chemical- and sequence-based features. Results: The best model, a gradient-boosted decision tree, achieved a sensitivity of 80.2% and a specificity of 76.9% on the hold-out test dataset. The clinical performance of the models was then estimated by predicting the binary pyrazinamide resistance phenotype of 4027 samples harbouring 367 unique missense mutations in pncA derived from 24 231 clinical isolates. Conclusions: This work demonstrates how machine learning can enhance the sensitivity/specificity of pyrazinamide resistance prediction in genetics-based clinical microbiology workflows, highlights novel mutations for future biochemical investigation, and is a proof of concept for using this approach in other drugs.

3.
Microb Genom ; 10(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38315172

ABSTRACT

Mutations in Mycobacterium tuberculosis associated with resistance to antibiotics often come with a fitness cost for the bacteria. Resistance to the first-line drug rifampicin leads to lower competitive fitness of M. tuberculosis populations when compared to susceptible populations. This fitness cost, introduced by resistance mutations in the RNA polymerase, can be alleviated by compensatory mutations (CMs) in other regions of the affected protein. CMs are of particular interest clinically since they could lock in resistance mutations, encouraging the spread of resistant strains worldwide. Here, we report the statistical inference of a comprehensive set of CMs in the RNA polymerase of M. tuberculosis, using over 70 000 M. tuberculosis genomes that were collated as part of the CRyPTIC project. The unprecedented size of this data set gave the statistical tests more power to investigate the association of putative CMs with resistance-conferring mutations. Overall, we propose 51 high-confidence CMs by means of statistical association testing and suggest hypotheses for how they exert their compensatory mechanism by mapping them onto the protein structure. In addition, we were able to show an association of CMs with higher in vitro growth densities, and hence presumably with higher fitness, in resistant samples in the more virulent M. tuberculosis lineage 2. Our results suggest the association of CM presence with significantly higher in vitro growth than for wild-type samples, although this association is confounded with lineage and sub-lineage affiliation. Our findings emphasize the integral role of CMs and lineage affiliation in resistance spread and increases the urgency of antibiotic stewardship, which implies accurate, cheap and widely accessible diagnostics for M. tuberculosis infections to not only improve patient outcomes but also prevent the spread of resistant strains.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Mutation , Rifampin/pharmacology , Tuberculosis/microbiology , DNA-Directed RNA Polymerases/genetics
4.
Microb Genom ; 9(12)2023 Dec.
Article in English | MEDLINE | ID: mdl-38100178

ABSTRACT

Several bioinformatics genotyping algorithms are now commonly used to characterize antimicrobial resistance (AMR) gene profiles in whole-genome sequencing (WGS) data, with a view to understanding AMR epidemiology and developing resistance prediction workflows using WGS in clinical settings. Accurately evaluating AMR in Enterobacterales, particularly Escherichia coli, is of major importance, because this is a common pathogen. However, robust comparisons of different genotyping approaches on relevant simulated and large real-life WGS datasets are lacking. Here, we used both simulated datasets and a large set of real E. coli WGS data (n=1818 isolates) to systematically investigate genotyping methods in greater detail. Simulated constructs and real sequences were processed using four different bioinformatic programs (ABRicate, ARIBA, KmerResistance and SRST2, run with the ResFinder database) and their outputs compared. For simulation tests where 3079 AMR gene variants were inserted into random sequence constructs, KmerResistance was correct for 3076 (99.9 %) simulations, ABRicate for 3054 (99.2 %), ARIBA for 2783 (90.4 %) and SRST2 for 2108 (68.5 %). For simulation tests where two closely related gene variants were inserted into random sequence constructs, KmerResistance identified the correct alleles in 35 338/46 318 (76.3 %) simulations, ABRicate identified them in 11 842/46 318 (25.6 %) simulations, ARIBA identified them in 1679/46 318 (3.6 %) simulations and SRST2 identified them in 2000/46 318 (4.3 %) simulations. In real data, across all methods, 1392/1818 (76 %) isolates had discrepant allele calls for at least 1 gene. In addition to highlighting areas for improvement in challenging scenarios, (e.g. identification of AMR genes at <10× coverage, identifying multiple closely related AMR genes present in the same sample), our evaluations identified some more systematic errors that could be readily soluble, such as repeated misclassification (i.e. naming) of genes as shorter variants of the same gene present within the reference resistance gene database. Such naming errors accounted for at least 2530/4321 (59 %) of the discrepancies seen in real data. Moreover, many of the remaining discrepancies were likely 'artefactual', with reporting of cut-off differences accounting for at least 1430/4321 (33 %) discrepants. Whilst we found that comparing outputs generated by running multiple algorithms on the same dataset could identify and resolve these algorithmic artefacts, the results of our evaluations emphasize the need for developing new and more robust genotyping algorithms to further improve accuracy and performance.


Subject(s)
Escherichia coli , Genomics , Escherichia coli/genetics , Computational Biology , Alleles , Algorithms
5.
JAC Antimicrob Resist ; 5(2): dlad039, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37025302

ABSTRACT

Objectives: Fluoroquinolone resistance poses a threat to the successful treatment of tuberculosis. WGS, and the subsequent detection of catalogued resistance-associated mutations, offers an attractive solution to fluoroquinolone susceptibility testing but sensitivities are often less than 90%. We hypothesize that this is partly because the bioinformatic pipelines used usually mask the recognition of minor alleles that have been implicated in fluoroquinolone resistance. Methods: We analysed the Comprehensive Resistance Prediction for Tuberculosis: an International Consortium (CRyPTIC) dataset of globally diverse WGS Mycobacterium tuberculosis isolates, with matched MICs for two fluoroquinolone drugs and allowed putative minor alleles to contribute to resistance prediction. Results: Detecting minor alleles increased the sensitivity of WGS for moxifloxacin resistance prediction from 85.4% to 94.0%, without significantly reducing specificity. We also found no correlation between the proportion of an M. tuberculosis population containing a resistance-conferring allele and the magnitude of resistance. Conclusions: Together our results highlight the importance of detecting minor resistance-conferring alleles when using WGS, or indeed any sequencing-based approach, to diagnose fluoroquinolone resistance.

6.
J Comput Chem ; 43(26): 1771-1782, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36054249

ABSTRACT

Drug resistant Mycobacterium tuberculosis, which mostly results from single nucleotide polymorphisms in antibiotic target genes, poses a major threat to tuberculosis treatment outcomes. Relative binding free energy (RBFE) calculations can rapidly predict the effects of mutations, but this approach has not been tested on large, complex proteins. We use RBFE calculations to predict the effects of M. tuberculosis RNA polymerase and DNA gyrase mutations on rifampicin and moxifloxacin susceptibility respectively. These mutations encompass a range of amino acid substitutions with known effects and include large steric perturbations and charged moieties. We find that moderate numbers (n = 3-15) of short RBFE calculations can predict resistance in cases where the mutation results in a large change in the binding free energy. We show that the method lacks discrimination in cases with either a small change in energy or that involve charged amino acids, and we investigate how these calculation errors may be decreased.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , DNA Gyrase/genetics , DNA Gyrase/metabolism , DNA Gyrase/pharmacology , Drug Resistance, Microbial , Humans , Moxifloxacin/pharmacology , Moxifloxacin/therapeutic use , Mutation , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Tuberculosis/drug therapy , Tuberculosis/microbiology
7.
Bioinformatics ; 38(12): 3291-3293, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35551365

ABSTRACT

SUMMARY: Viral sequence data from clinical samples frequently contain contaminating human reads, which must be removed prior to sharing for legal and ethical reasons. To enable host read removal for SARS-CoV-2 sequencing data on low-specification laptops, we developed ReadItAndKeep, a fast lightweight tool for Illumina and nanopore data that only keeps reads matching the SARS-CoV-2 genome. Peak RAM usage is typically below 10 MB, and runtime less than 1 min. We show that by excluding the polyA tail from the viral reference, ReadItAndKeep prevents bleed-through of human reads, whereas mapping to the human genome lets some reads escape. We believe our test approach (including all possible reads from the human genome, human samples from each of the 26 populations in the 1000 genomes data and a diverse set of SARS-CoV-2 genomes) will also be useful for others. AVAILABILITY AND IMPLEMENTATION: ReadItAndKeep is implemented in C++, released under the MIT license, and available from https://github.com/GenomePathogenAnalysisService/read-it-and-keep. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
COVID-19 , Software , Humans , Sequence Analysis, DNA , SARS-CoV-2/genetics , Decontamination , High-Throughput Nucleotide Sequencing , Genome, Human
8.
Elife ; 112022 05 19.
Article in English | MEDLINE | ID: mdl-35588296

ABSTRACT

Tuberculosis is a respiratory disease that is treatable with antibiotics. An increasing prevalence of resistance means that to ensure a good treatment outcome it is desirable to test the susceptibility of each infection to different antibiotics. Conventionally, this is done by culturing a clinical sample and then exposing aliquots to a panel of antibiotics, each being present at a pre-determined concentration, thereby determining if the sample isresistant or susceptible to each sample. The minimum inhibitory concentration (MIC) of a drug is the lowestconcentration that inhibits growth and is a more useful quantity but requires each sample to be tested at a range ofconcentrations for each drug. Using 96-well broth micro dilution plates with each well containing a lyophilised pre-determined amount of an antibiotic is a convenient and cost-effective way to measure the MICs of several drugs at once for a clinical sample. Although accurate, this is still an expensive and slow process that requires highly-skilled and experienced laboratory scientists. Here we show that, through the BashTheBug project hosted on the Zooniverse citizen science platform, a crowd of volunteers can reproducibly and accurately determine the MICs for 13 drugs and that simply taking the median or mode of 11-17 independent classifications is sufficient. There is therefore a potential role for crowds to support (but not supplant) the role of experts in antibiotic susceptibility testing.


Tuberculosis is a bacterial respiratory infection that kills about 1.4 million people worldwide each year. While antibiotics can cure the condition, the bacterium responsible for this disease, Mycobacterium tuberculosis, is developing resistance to these treatments. Choosing which antibiotics to use to treat the infection more carefully may help to combat the growing threat of drug-resistant bacteria. One way to find the best choice is to test how an antibiotic affects the growth of M. tuberculosis in the laboratory. To speed up this process, laboratories test multiple drugs simultaneously. They do this by growing bacteria on plates with 96 wells and injecting individual antibiotics in to each well at different concentrations. The Comprehensive Resistance Prediction for Tuberculosis (CRyPTIC) consortium has used this approach to collect and analyse bacteria from over 20,000 tuberculosis patients. An image of the 96-well plate is then captured and the level of bacterial growth in each well is assessed by laboratory scientists. But this work is difficult, time-consuming, and subjective, even for tuberculosis experts. Here, Fowler et al. show that enlisting citizen scientists may help speed up this process and reduce errors that arise from analysing such a large dataset. In April 2017, Fowler et al. launched the project 'BashTheBug' on the Zooniverse citizen science platform where anyone can access and analyse the images from the CRyPTIC consortium. They found that a crowd of inexperienced volunteers were able to consistently and accurately measure the concentration of antibiotics necessary to inhibit the growth of M. tuberculosis. If the concentration is above a pre-defined threshold, the bacteria are considered to be resistant to the treatment. A consensus result could be reached by calculating the median value of the classifications provided by as few as 17 different BashTheBug participants. The work of BashTheBug volunteers has reduced errors in the CRyPTIC project data, which has been used for several other studies. For instance, the World Health Organization (WHO) has also used the data to create a catalogue of genetic mutations associated with antibiotics resistance in M. tuberculosis. Enlisting citizen scientists has accelerated research on tuberculosis and may help with other pressing public health concerns.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Antitubercular Agents/pharmacology , Humans , Microbial Sensitivity Tests , Tuberculosis/drug therapy , Volunteers
9.
Lancet Microbe ; 3(4): e265-e273, 2022 04.
Article in English | MEDLINE | ID: mdl-35373160

ABSTRACT

Background: Molecular diagnostics are considered the most promising route to achieving rapid, universal drug susceptibility testing for Mycobacterium tuberculosiscomplex (MTBC). We aimed to generate a WHO endorsed catalogue of mutations to serve as a global standard for interpreting molecular information for drug resistance prediction. Methods: A candidate gene approach was used to identify mutations as associated with resistance, or consistent with susceptibility, for 13 WHO endorsed anti-tuberculosis drugs. 38,215 MTBC isolates with paired whole-genome sequencing and phenotypic drug susceptibility testing data were amassed from 45 countries. For each mutation, a contingency table of binary phenotypes and presence or absence of the mutation computed positive predictive value, and Fisher's exact tests generated odds ratios and Benjamini-Hochberg corrected p-values. Mutations were graded as Associated with Resistance if present in at least 5 isolates, if the odds ratio was >1 with a statistically significant corrected p-value, and if the lower bound of the 95% confidence interval on the positive predictive value for phenotypic resistance was >25%. A series of expert rules were applied for final confidence grading of each mutation. Findings: 15,667 associations were computed for 13,211 unique mutations linked to one or more drugs. 1,149/15,667 (7·3%) mutations were classified as associated with phenotypic resistance and 107/15,667 (0·7%) were deemed consistent with susceptibility. For rifampicin, isoniazid, ethambutol, fluoroquinolones, and streptomycin, the mutations' pooled sensitivity was >80%. Specificity was over 95% for all drugs except ethionamide (91·4%), moxifloxacin (91·6%) and ethambutol (93·3%). Only two resistance mutations were classified for bedaquiline, delamanid, clofazimine, and linezolid as prevalence of phenotypic resistance was low for these drugs. Interpretation: This first WHO endorsed catalogue of molecular targets for MTBC drug susceptibility testing provides a global standard for resistance interpretation. Its existence should encourage the implementation of molecular diagnostics by National Tuberculosis Programmes. Funding: UNITAID, Wellcome, MRC, BMGF.


Subject(s)
Ethambutol , Mycobacterium tuberculosis , Antitubercular Agents/pharmacology , Drug Resistance , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis/genetics , World Health Organization
10.
Structure ; 29(10): 1182-1191.e4, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34242558

ABSTRACT

Tuberculosis (TB) is the leading cause of death from a single infectious agent and in 2019 an estimated 10 million people worldwide contracted the disease. Although treatments for TB exist, continual emergence of drug-resistant variants necessitates urgent development of novel antituberculars. An important new target is the lipid transporter MmpL3, which is required for construction of the unique cell envelope that shields Mycobacterium tuberculosis (Mtb) from the immune system. However, a structural understanding of the mutations in Mtb MmpL3 that confer resistance to the many preclinical leads is lacking, hampering efforts to circumvent resistance mechanisms. Here, we present the cryoelectron microscopy structure of Mtb MmpL3 and use it to comprehensively analyze the mutational landscape of drug resistance. Our data provide a rational explanation for resistance variants local to the central drug binding site, and also highlight a potential alternative route to resistance operating within the periplasmic domain.


Subject(s)
Bacterial Proteins/chemistry , Drug Resistance, Bacterial , Membrane Transport Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cryoelectron Microscopy , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mutation
11.
Interface Focus ; 10(6): 20190141, 2020 Dec 06.
Article in English | MEDLINE | ID: mdl-33178416

ABSTRACT

The emergence of antimicrobial resistance threatens modern medicine and necessitates more personalized treatment of bacterial infections. Sequencing the whole genome of the pathogen(s) in a clinical sample offers one way to improve clinical microbiology diagnostic services, and has already been adopted for tuberculosis in some countries. A key weakness of a genetics clinical microbiology is it cannot return a result for rare or novel genetic variants and therefore predictive methods are required. Non-synonymous mutations in the S. aureus dfrB gene can be successfully classified as either conferring resistance (or not) by calculating their effect on the binding free energy of the antibiotic, trimethoprim. The underlying approach, alchemical free energy methods, requires large numbers of molecular dynamics simulations to be run. We show that a large number (N = 15) of binding free energies calculated from a series of very short (50 ps) molecular dynamics simulations are able to satisfactorily classify all seven mutations in our clinically derived testset. A result for a single mutation could therefore be returned in less than an hour, thereby demonstrating that this or similar methods are now sufficiently fast and reproducible for clinical use.

12.
Elife ; 92020 08 21.
Article in English | MEDLINE | ID: mdl-32820721

ABSTRACT

We conducted voluntary Covid-19 testing programmes for symptomatic and asymptomatic staff at a UK teaching hospital using naso-/oro-pharyngeal PCR testing and immunoassays for IgG antibodies. 1128/10,034 (11.2%) staff had evidence of Covid-19 at some time. Using questionnaire data provided on potential risk-factors, staff with a confirmed household contact were at greatest risk (adjusted odds ratio [aOR] 4.82 [95%CI 3.45-6.72]). Higher rates of Covid-19 were seen in staff working in Covid-19-facing areas (22.6% vs. 8.6% elsewhere) (aOR 2.47 [1.99-3.08]). Controlling for Covid-19-facing status, risks were heterogenous across the hospital, with higher rates in acute medicine (1.52 [1.07-2.16]) and sporadic outbreaks in areas with few or no Covid-19 patients. Covid-19 intensive care unit staff were relatively protected (0.44 [0.28-0.69]), likely by a bundle of PPE-related measures. Positive results were more likely in Black (1.66 [1.25-2.21]) and Asian (1.51 [1.28-1.77]) staff, independent of role or working location, and in porters and cleaners (2.06 [1.34-3.15]).


Subject(s)
Coronavirus Infections/epidemiology , Health Personnel/statistics & numerical data , Pneumonia, Viral/epidemiology , Adolescent , Adult , Age Factors , Aged , Asymptomatic Infections/epidemiology , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/transmission , Coronavirus Infections/virology , Female , Hospitals, Teaching/statistics & numerical data , Humans , Incidence , Infectious Disease Transmission, Patient-to-Professional/statistics & numerical data , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Pandemics , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Risk , SARS-CoV-2 , Surveys and Questionnaires , United Kingdom/epidemiology , Young Adult
13.
Genome Med ; 12(1): 27, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32143680

ABSTRACT

BACKGROUND: A comprehensive understanding of the pre-existing genetic variation in genes associated with antibiotic resistance in the Mycobacterium tuberculosis complex (MTBC) is needed to accurately interpret whole-genome sequencing data for genotypic drug susceptibility testing (DST). METHODS: We investigated mutations in 92 genes implicated in resistance to 21 anti-tuberculosis drugs using the genomes of 405 phylogenetically diverse MTBC strains. The role of phylogenetically informative mutations was assessed by routine phenotypic DST data for the first-line drugs isoniazid, rifampicin, ethambutol, and pyrazinamide from a separate collection of over 7000 clinical strains. Selected mutations/strains were further investigated by minimum inhibitory concentration (MIC) testing. RESULTS: Out of 547 phylogenetically informative mutations identified, 138 were classified as not correlating with resistance to first-line drugs. MIC testing did not reveal a discernible impact of a Rv1979c deletion shared by M. africanum lineage 5 strains on resistance to clofazimine. Finally, we found molecular evidence that some MTBC subgroups may be hyper-susceptible to bedaquiline and clofazimine by different loss-of-function mutations affecting a drug efflux pump subunit (MmpL5). CONCLUSIONS: Our findings underline that the genetic diversity in MTBC has to be studied more systematically to inform the design of clinical trials and to define sound epidemiologic cut-off values (ECOFFs) for new and repurposed anti-tuberculosis drugs. In that regard, our comprehensive variant catalogue provides a solid basis for the interpretation of mutations in genotypic as well as in phenotypic DST assays.


Subject(s)
Drug Resistance, Bacterial , Genes, MDR , Mutation , Mycobacterium tuberculosis/genetics , Phylogeny , Antitubercular Agents/pharmacology , Clofazimine/pharmacology , Diarylquinolines/pharmacology , Inhibitory Concentration 50 , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/drug effects
15.
ACS Cent Sci ; 5(8): 1312-1314, 2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31482113
16.
Microbiology (Reading) ; 164(12): 1522-1530, 2018 12.
Article in English | MEDLINE | ID: mdl-30351270

ABSTRACT

M. tuberculosis grows slowly and is challenging to work with experimentally compared with many other bacteria. Although microtitre plates have the potential to enable high-throughput phenotypic testing of M. tuberculosis, they can be difficult to read and interpret. Here we present a software package, the Automated Mycobacterial Growth Detection Algorithm (AMyGDA), that measures how much M. tuberculosis is growing in each well of a 96-well microtitre plate. The plate used here has serial dilutions of 14 anti-tuberculosis drugs, thereby permitting the MICs to be elucidated. The three participating laboratories each inoculated 38 96-well plates with 15 known M. tuberculosis strains (including the standard H37Rv reference strain) and, after 2 weeks' incubation, measured the MICs for all 14 drugs on each plate and took a photograph. By analysing the images, we demonstrate that AMyGDA is reproducible, and that the MICs measured are comparable to those measured by a laboratory scientist. The AMyGDA software will be used by the Comprehensive Resistance Prediction for Tuberculosis: an International Consortium (CRyPTIC) to measure the drug susceptibility profile of a large number (>30000) of samples of M. tuberculosis from patients over the next few years.


Subject(s)
Antitubercular Agents/pharmacology , Microbial Sensitivity Tests/instrumentation , Microbial Sensitivity Tests/methods , Mycobacterium tuberculosis/drug effects , Automation, Laboratory , Diagnostic Tests, Routine , Drug Resistance, Bacterial , Image Processing, Computer-Assisted , Mycobacterium tuberculosis/growth & development , Reproducibility of Results , Software
17.
Article in English | MEDLINE | ID: mdl-29941636

ABSTRACT

The UKMYC5 plate is a 96-well microtiter plate designed by the CRyPTIC Consortium (Comprehensive Resistance Prediction for Tuberculosis: an International Consortium) to enable the measurement of MICs of 14 different antituberculosis (anti-TB) compounds for >30,000 clinical Mycobacterium tuberculosis isolates. Unlike the MYCOTB plate, on which the UKMYC5 plate is based, the UKMYC5 plate includes two new (bedaquiline and delamanid) and two repurposed (clofazimine and linezolid) compounds. UKMYC5 plates were tested by seven laboratories on four continents by use of a panel of 19 external quality assessment (EQA) strains, including H37Rv. To assess the optimal combination of reading method and incubation time, MICs were measured from each plate by two readers, using three methods (mirrored box, microscope, and Vizion digital viewing system), after 7, 10, 14, and 21 days of incubation. In addition, all EQA strains were subjected to whole-genome sequencing and phenotypically characterized by the 7H10/7H11 agar proportion method (APM) and by use of MGIT960 mycobacterial growth indicator tubes. We concluded that the UKMYC5 plate is optimally read using the Vizion system after 14 days of incubation, achieving an interreader agreement of 97.9% and intra- and interlaboratory reproducibility rates of 95.6% and 93.1%, respectively. The mirrored box had a similar reproducibility. Strains classified as resistant by APM, MGIT960, or the presence of mutations known to confer resistance consistently showed elevated MICs compared to those for strains classified as susceptible. Finally, the UKMYC5 plate records intermediate MICs for one strain for which the APM measured MICs close to the applied critical concentration, providing early evidence that the UKMYC5 plate can quantitatively measure the magnitude of resistance to anti-TB compounds that is due to specific genetic variation.


Subject(s)
Antitubercular Agents/pharmacology , Diarylquinolines/pharmacology , Mycobacterium tuberculosis/drug effects , Nitroimidazoles/pharmacology , Oxazoles/pharmacology , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis/drug therapy , Clofazimine/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Humans , Linezolid/pharmacology , Microbial Sensitivity Tests/methods , Reproducibility of Results
18.
Cell Chem Biol ; 25(3): 339-349.e4, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29307840

ABSTRACT

The rise of antibiotic resistance threatens modern medicine; to combat it new diagnostic methods are required. Sequencing the whole genome of a pathogen offers the potential to accurately determine which antibiotics will be effective to treat a patient. A key limitation of this approach is that it cannot classify rare or previously unseen mutations. Here we demonstrate that alchemical free energy methods, a well-established class of methods from computational chemistry, can successfully predict whether mutations in Staphylococcus aureus dihydrofolate reductase confer resistance to trimethoprim. We also show that the method is quantitatively accurate by calculating how much the most common resistance-conferring mutation, F99Y, reduces the binding free energy of trimethoprim and comparing predicted and experimentally measured minimum inhibitory concentrations for seven different mutations. Finally, by considering up to 32 free energy calculations for each mutation, we estimate its specificity and sensitivity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Trimethoprim/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/drug effects , Microbial Sensitivity Tests , Mutation , Staphylococcus aureus/enzymology , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism , Thermodynamics
19.
Sci Rep ; 7(1): 16647, 2017 11 30.
Article in English | MEDLINE | ID: mdl-29192147

ABSTRACT

Cell membranes are crowded and complex environments. To investigate the effect of protein-lipid interactions on dynamic organization in mammalian cell membranes, we have performed coarse-grained molecular dynamics simulations containing >100 copies of an inwardly rectifying potassium (Kir) channel which forms specific interactions with the regulatory lipid phosphatidylinositol 4,5-bisphosphate (PIP2). The tendency of protein molecules to cluster has the effect of organizing the membrane into dynamic compartments. At the same time, the diversity of lipids present has a marked effect on the clustering behavior of ion channels. Sub-diffusion of proteins and lipids is observed. Protein crowding alters the sub-diffusive behavior of proteins and lipids such as PIP2 which interact tightly with Kir channels. Protein crowding also affects bilayer properties, such as membrane undulations and bending rigidity, in a PIP2-dependent manner. This interplay between the diffusion and the dynamic organization of Kir channels may have important implications for channel function.


Subject(s)
Cell Membrane/chemistry , Cell Membrane/metabolism , Ion Channels/chemistry , Ion Channels/metabolism , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Molecular Dynamics Simulation , Molecular Conformation , Structure-Activity Relationship
20.
Biochemistry ; 56(5): 712-722, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28068080

ABSTRACT

The first transmembrane (TM1) helix in the red cell anion exchanger (AE1, Band 3, or SLC4A1) acts as an internal signal anchor that binds the signal recognition particle and directs the nascent polypeptide chain to the endoplasmic reticulum (ER) membrane where it moves from the translocon laterally into the lipid bilayer. The sequence N-terminal to TM1 forms an amphipathic helix that lies at the membrane interface and is connected to TM1 by a bend at Pro403. Southeast Asian ovalocytosis (SAO) is a red cell abnormality caused by a nine-amino acid deletion (Ala400-Ala408) at the N-terminus of TM1. Here we demonstrate, by extensive (∼4.5 µs) molecular dynamics simulations of TM1 in a model 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membrane, that the isolated TM1 peptide is highly dynamic and samples the structure of TM1 seen in the crystal structure of the membrane domain of AE1. The SAO deletion not only removes the proline-induced bend but also causes a "pulling in" of the part of the amphipathic helix into the hydrophobic phase of the bilayer, as well as the C-terminal of the peptide. The dynamics of the SAO peptide very infrequently resembles the structure of TM1 in AE1, demonstrating the disruptive effect the SAO deletion has on AE1 folding. These results provide a precise molecular view of the disposition and dynamics of wild-type and SAO TM1 in a lipid bilayer, an important early biosynthetic intermediate in the insertion of AE1 into the ER membrane, and extend earlier results of cell-free translation experiments.


Subject(s)
Anion Exchange Protein 1, Erythrocyte/chemistry , Base Sequence , Elliptocytosis, Hereditary/genetics , Phosphatidylcholines/chemistry , Sequence Deletion , Amino Acid Sequence , Anion Exchange Protein 1, Erythrocyte/genetics , Anion Exchange Protein 1, Erythrocyte/metabolism , Elliptocytosis, Hereditary/metabolism , Erythrocytes/metabolism , Erythrocytes/pathology , Gene Expression , Humans , Hydrophobic and Hydrophilic Interactions , Membranes, Artificial , Molecular Dynamics Simulation , Proline/chemistry , Proline/metabolism , Protein Domains , Protein Folding , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...