Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Matern Fetal Neonatal Med ; 37(1): 2333923, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38584143

ABSTRACT

OBJECTIVE: To validate a serum biomarker developed in the USA for preterm birth (PTB) risk stratification in Viet Nam. METHODS: Women with singleton pregnancies (n = 5000) were recruited between 19+0-23+6 weeks' gestation at Tu Du Hospital, Ho Chi Minh City. Maternal serum was collected from 19+0-22+6 weeks' gestation and participants followed to neonatal discharge. Relative insulin-like growth factor binding protein 4 (IGFBP4) and sex hormone binding globulin (SHBG) abundances were measured by mass spectrometry and their ratio compared between PTB cases and term controls. Discrimination (area under the receiver operating characteristic curve, AUC) and calibration for PTB <37 and <34 weeks' gestation were tested, with model tuning using clinical factors. Measured outcomes included all PTBs (any birth ≤37 weeks' gestation) and spontaneous PTBs (birth ≤37 weeks' gestation with clinical signs of initiation of parturition). RESULTS: Complete data were available for 4984 (99.7%) individuals. The cohort PTB rate was 6.7% (n = 335). We observed an inverse association between the IGFBP4/SHBG ratio and gestational age at birth (p = 0.017; AUC 0.60 [95% CI, 0.53-0.68]). Including previous PTB (for multiparous women) or prior miscarriage (for primiparous women) improved performance (AUC 0.65 and 0.70, respectively, for PTB <37 and <34 weeks' gestation). Optimal performance (AUC 0.74) was seen within 19-20 weeks' gestation, for BMI >21 kg/m2 and age 20-35 years. CONCLUSION: We have validated a novel serum biomarker for PTB risk stratification in a very different setting to the original study. Further research is required to determine appropriate ratio thresholds based on the prevalence of risk factors and the availability of resources and preventative therapies.


Subject(s)
Premature Birth , Pregnancy , Infant, Newborn , Humans , Female , Young Adult , Adult , Premature Birth/epidemiology , Premature Birth/diagnosis , Cohort Studies , Insulin-Like Peptides , Prognosis , Sex Hormone-Binding Globulin , Vietnam/epidemiology , Gestational Age , Biomarkers
2.
J Med Econ ; 25(1): 1255-1266, 2022.
Article in English | MEDLINE | ID: mdl-36377363

ABSTRACT

OBJECTIVES: Preterm birth occurs in more than 10% of U.S. births and is the leading cause of U.S. neonatal deaths, with estimated annual costs exceeding $25 billion USD. Using real-world data, we modeled the potential clinical and economic utility of a prematurity-reduction program comprising screening in a racially and ethnically diverse population with a validated proteomic biomarker risk predictor, followed by case management with or without pharmacological treatment. METHODS: The ACCORDANT microsimulation model used individual patient data from a prespecified, randomly selected sub-cohort (N = 847) of a multicenter, observational study of U.S. subjects receiving standard obstetric care with masked risk predictor assessment (TREETOP; NCT02787213). All subjects were included in three arms across 500 simulated trials: standard of care (SoC, control); risk predictor/case management comprising increased outreach, education and specialist care (RP-CM, active); and multimodal management (risk predictor/case management with pharmacological treatment) (RP-MM, active). In the active arms, only subjects stratified as higher risk by the predictor were modeled as receiving the intervention, whereas lower-risk subjects received standard care. Higher-risk subjects' gestational ages at birth were shifted based on published efficacies, and dependent outcomes, calibrated using national datasets, were changed accordingly. Subjects otherwise retained their original TREETOP outcomes. Arms were compared using survival analysis for neonatal and maternal hospital length of stay, bootstrap intervals for neonatal cost, and Fisher's exact test for neonatal morbidity/mortality (significance, p < .05). RESULTS: The model predicted improvements for all outcomes. RP-CM decreased neonatal and maternal hospital stay by 19% (p = .029) and 8.5% (p = .001), respectively; neonatal costs' point estimate by 16% (p = .098); and moderate-to-severe neonatal morbidity/mortality by 29% (p = .025). RP-MM strengthened observed reductions and significance. Point estimates of benefit did not differ by race/ethnicity. CONCLUSIONS: Modeled evaluation of a biomarker-based test-and-treat strategy in a diverse population predicts clinically and economically meaningful improvements in neonatal and maternal outcomes.


Preterm birth, defined as delivery before 37 weeks' gestation, is the leading cause of illness and death in newborns. In the United States, more than 10% of infants are born prematurely, and this rate is substantially higher in lower-income, inner-city and Black populations. Prematurity associates with greatly increased risk of short- and long-term medical complications and can generate significant costs throughout the lives of affected children. Annual U.S. health care costs to manage short- and long-term prematurity complications are estimated to exceed $25 billion.Clinical interventions, including case management (increased patient outreach, education and specialist care), pharmacological treatment and their combination can provide benefit to pregnancies at higher risk for preterm birth. Early and sensitive risk detection, however, remains a challenge.We have developed and validated a proteomic biomarker risk predictor for early identification of pregnancies at increased risk of preterm birth. The ACCORDANT study modeled treatments with real-world patient data from a racially and ethnically diverse U.S. population to compare the benefits of risk predictor testing plus clinical intervention for higher-risk pregnancies versus no testing and standard care. Measured outcomes included neonatal and maternal length of hospital stay, associated costs and neonatal morbidity and mortality. The model projected improved outcomes and reduced costs across all subjects, including ethnic and racial minority populations, when predicted higher-risk pregnancies were treated using case management with or without pharmacological treatment. The biomarker risk predictor shows high potential to be a clinically important component of risk stratification for pregnant women, leading to tangible gains in reducing the impact of preterm birth.


Subject(s)
Premature Birth , Pregnancy , Female , Infant, Newborn , Humans , Premature Birth/prevention & control , Cost-Benefit Analysis , Proteomics , Gestational Age , Biomarkers
3.
J Clin Med ; 11(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35629011

ABSTRACT

The clinical management of pregnancy and spontaneous preterm birth (sPTB) relies on estimates of gestational age (GA). Our objective was to evaluate the effect of GA dating uncertainty on the observed performance of a validated proteomic biomarker risk predictor, and then to test the generalizability of that effect in a broader range of GA at blood draw. In a secondary analysis of a prospective clinical trial (PAPR; NCT01371019), we compared two GA dating categories: both ultrasound and dating by last menstrual period (LMP) (all subjects) and excluding dating by LMP (excluding LMP). The risk predictor's performance was observed at the validated risk predictor threshold both in weeks 191/7-206/7 and extended to weeks 180/7-206/7. Strict blinding and independent statistical analyses were employed. The validated biomarker risk predictor showed greater observed sensitivity of 88% at 75% specificity (increases of 17% and 1%) in more reliably dated (excluding-LMP) subjects, relative to all subjects. Excluding dating by LMP significantly improved the sensitivity in weeks 191/7-206/7. In the broader blood draw window, the previously validated risk predictor threshold significantly stratified higher and lower risk of sPTB, and the risk predictor again showed significantly greater observed sensitivity in excluding-LMP subjects. These findings have implications for testing the performance of models aimed at predicting PTB.

4.
J Matern Fetal Neonatal Med ; 35(25): 8878-8886, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34847802

ABSTRACT

OBJECTIVES: To address the disproportionate burden of preterm birth (PTB) in low- and middle-income countries, this study aimed to (1) verify the performance of the United States-validated spontaneous PTB (sPTB) predictor, comprised of the IBP4/SHBG protein ratio, in subjects from Bangladesh, Pakistan and Tanzania enrolled in the Alliance for Maternal and Newborn Health Improvement (AMANHI) biorepository study, and (2) discover biomarkers that improve performance of IBP4/SHBG in the AMANHI cohort. STUDY DESIGN: The performance of the IBP4/SHBG biomarker was first evaluated in a nested case control validation study, then utilized in a follow-on discovery study performed on the same samples. Levels of serum proteins were measured by targeted mass spectrometry. Differences between the AMANHI and U.S. cohorts were adjusted using body mass index (BMI) and gestational age (GA) at blood draw as covariates. Prediction of sPTB < 37 weeks and < 34 weeks was assessed by area under the receiver operator curve (AUC). In the discovery phase, an artificial intelligence method selected additional protein biomarkers complementary to IBP4/SHBG in the AMANHI cohort. RESULTS: The IBP4/SHBG biomarker significantly predicted sPTB < 37 weeks (n = 88 vs. 171 terms ≥ 37 weeks) after adjusting for BMI and GA at blood draw (AUC= 0.64, 95% CI: 0.57-0.71, p < .001). Performance was similar for sPTB < 34 weeks (n = 17 vs. 184 ≥ 34 weeks): AUC = 0.66, 95% CI: 0.51-0.82, p = .012. The discovery phase of the study showed that the addition of endoglin, prolactin, and tetranectin to the above model resulted in the prediction of sPTB < 37 with an AUC= 0.72 (95% CI: 0.66-0.79, p-value < .001) and prediction of sPTB < 34 with an AUC of 0.78 (95% CI: 0.67-0.90, p < .001). CONCLUSION: A protein biomarker pair developed in the U.S. may have broader application in diverse non-U.S. populations.


Subject(s)
Premature Birth , Infant, Newborn , Female , Humans , Premature Birth/diagnosis , Case-Control Studies , Artificial Intelligence , Prospective Studies , Biomarkers , Africa South of the Sahara
5.
J Clin Med ; 10(21)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34768605

ABSTRACT

Preterm births are the leading cause of neonatal death in the United States. Previously, a spontaneous preterm birth (sPTB) predictor based on the ratio of two proteins, IBP4/SHBG, was validated as a predictor of sPTB in the Proteomic Assessment of Preterm Risk (PAPR) study. In particular, a proteomic biomarker threshold of -1.37, corresponding to a ~two-fold increase or ~15% risk of sPTB, significantly stratified earlier deliveries. Guidelines for molecular tests advise replication in a second independent study. Here we tested whether the significant association between proteomic biomarker scores above the threshold and sPTB, and associated adverse outcomes, was replicated in a second independent study, the Multicenter Assessment of a Spontaneous Preterm Birth Risk Predictor (TREETOP). The threshold significantly stratified subjects in PAPR and TREETOP for sPTB (p = 0.041, p = 0.041, respectively). Application of the threshold in a Kaplan-Meier analysis demonstrated significant stratification in each study, respectively, for gestational age at birth (p < 001, p = 0.0016) and rate of hospital discharge for both neonate (p < 0.001, p = 0.005) and mother (p < 0.001, p < 0.001). Above the threshold, severe neonatal morbidity/mortality and mortality alone were 2.2 (p = 0.0083,) and 7.4-fold higher (p = 0.018), respectively, in both studies combined. Thus, higher predictor scores were associated with multiple adverse pregnancy outcomes.

6.
Am J Obstet Gynecol MFM ; 2(3): 100140, 2020 08.
Article in English | MEDLINE | ID: mdl-33345877

ABSTRACT

BACKGROUND: Preterm birth remains a common and devastating complication of pregnancy. There remains a need for effective and accurate screening methods for preterm birth. Using a proteomic approach, we previously discovered and validated (Proteomic Assessment of Preterm Risk study, NCT01371019) a preterm birth predictor comprising a ratio of insulin-like growth factor-binding protein 4 to sex hormone-binding globulin. OBJECTIVE: To determine the performance of the ratio of insulin-like growth factor-binding protein 4 to sex hormone-binding globulin to predict both spontaneous and medically indicated very preterm births, in an independent cohort distinct from the one in which it was developed. STUDY DESIGN: This was a prospective observational study (Multicenter Assessment of a Spontaneous Preterm Birth Risk Predictor, NCT02787213) at 18 sites in the United States. Women had blood drawn at 170/7 to 216/7 weeks' gestation. For confirmation, we planned to analyze a randomly selected subgroup of women having blood drawn between 191/7 and 206/7 weeks' gestation, with the results of the remaining study participants blinded for future validation studies. Serum from participants was analyzed by mass spectrometry. Neonatal morbidity and mortality were analyzed using a composite score by a method from the PREGNANT trial (NCT00615550, Hassan et al). Scores of 0-3 reflect increasing numbers of morbidities or length of neonatal intensive care unit stay, and 4 represents perinatal mortality. RESULTS: A total of 5011 women were enrolled, with 847 included in this planned substudy analysis. There were 9 preterm birth cases at <320/7 weeks' gestation and 838 noncases at ≥320/7 weeks' gestation; 21 of 847 infants had neonatal composite morbidity and mortality index scores of ≥3, and 4 of 21 had a score of 4. The ratio of insulin-like growth factor-binding protein 4 to sex hormone-binding globulin ratio was substantially higher in both preterm births at <320/7 weeks' gestation and there were more severe neonatal outcomes. The ratio of insulin-like growth factor-binding protein 4 to sex hormone-binding globulin ratio was significantly predictive of birth at <320/7 weeks' gestation (area under the receiver operating characteristic curve, 0.71; 95% confidence interval, 0.55-0.87; P=.016). Stratification by body mass index, optimized in the previous validation study (22

Subject(s)
Premature Birth , Cohort Studies , Female , Gestational Age , Humans , Infant, Newborn , Pregnancy , Prospective Studies , Proteomics , United States
7.
Cell Rep Med ; 1(2)2020 05 19.
Article in English | MEDLINE | ID: mdl-32864636

ABSTRACT

Development of effective prevention and treatment strategies for pre-eclampsia is limited by the lack of accurate methods for identification of at-risk pregnancies. We performed small RNA sequencing (RNA-seq) of maternal serum extracellular RNAs (exRNAs) to discover and verify microRNAs (miRNAs) differentially expressed in patients who later developed pre-eclampsia. Sera collected from 73 pre-eclampsia cases and 139 controls between 17 and 28 weeks gestational age (GA), divided into separate discovery and verification cohorts, are analyzed by small RNA-seq. Discovery and verification of univariate and bivariate miRNA biomarkers reveal that bivariate biomarkers verify at a markedly higher rate than univariate biomarkers. The majority of verified biomarkers contain miR-155-5p, which has been reported to mediate the pre-eclampsia-associated repression of endothelial nitric oxide synthase (eNOS) by tumor necrosis factor alpha (TNF-α). Deconvolution analysis reveals that several verified miRNA biomarkers come from the placenta and are likely carried by placenta-specific extracellular vesicles.


Subject(s)
Extracellular Vesicles/metabolism , MicroRNAs/blood , Pre-Eclampsia/diagnosis , Adult , Asymptomatic Diseases , Biomarkers/blood , Case-Control Studies , Extracellular Vesicles/genetics , Female , Gestational Age , Humans , Maternal Serum Screening Tests/methods , Maternal Serum Screening Tests/trends , MicroRNAs/metabolism , Pre-Eclampsia/blood , Pregnancy , Prognosis , Young Adult
8.
Am J Obstet Gynecol ; 214(5): 633.e1-633.e24, 2016 May.
Article in English | MEDLINE | ID: mdl-26874297

ABSTRACT

BACKGROUND: Preterm delivery remains the leading cause of perinatal mortality. Risk factors and biomarkers have traditionally failed to identify the majority of preterm deliveries. OBJECTIVE: To develop and validate a mass spectrometry-based serum test to predict spontaneous preterm delivery in asymptomatic pregnant women. STUDY DESIGN: A total of 5501 pregnant women were enrolled between 17(0/7) and 28(6/7) weeks gestational age in the prospective Proteomic Assessment of Preterm Risk study at 11 sites in the United States between 2011 and 2013. Maternal blood was collected at enrollment and outcomes collected following delivery. Maternal serum was processed by a proteomic workflow, and proteins were quantified by multiple reaction monitoring mass spectrometry. The discovery and verification process identified 2 serum proteins, insulin-like growth factor-binding protein 4 (IBP4) and sex hormone-binding globulin (SHBG), as predictors of spontaneous preterm delivery. We evaluated a predictor using the log ratio of the measures of IBP4 and SHBG (IBP4/SHBG) in a clinical validation study to classify spontaneous preterm delivery cases (<37(0/7) weeks gestational age) in a nested case-control cohort different from subjects used in discovery and verification. Strict blinding and independent statistical analyses were employed. RESULTS: The predictor had an area under the receiver operating characteristic curve value of 0.75 and sensitivity and specificity of 0.75 and 0.74, respectively. The IBP4/SHBG predictor at this sensitivity and specificity had an odds ratio of 5.04 for spontaneous preterm delivery. Accuracy of the IBP4/SHBG predictor increased using earlier case-vs-control gestational age cutoffs (eg, <35(0/7) vs ≥35(0/7) weeks gestational age). Importantly, higher-risk subjects defined by the IBP4/SHBG predictor score generally gave birth earlier than lower-risk subjects. CONCLUSION: A serum-based molecular predictor identifies asymptomatic pregnant women at risk of spontaneous preterm delivery, which may provide utility in identifying women at risk at an early stage of pregnancy to allow for clinical intervention. This early detection would guide enhanced levels of care and accelerate development of clinical strategies to prevent preterm delivery.


Subject(s)
Insulin-Like Growth Factor Binding Protein 4/blood , Premature Birth/blood , Sex Hormone-Binding Globulin/analysis , Biomarkers/blood , Female , Humans , Mass Spectrometry , Pregnancy , Pregnancy Trimester, Second/blood , Prospective Studies , ROC Curve , Sensitivity and Specificity
9.
Clin Chem ; 56(12): 1854-61, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20940330

ABSTRACT

BACKGROUND: We sought to develop a tandem mass spectrometry assay in which the enzymatic activities of 3 lysosomal enzymes (α-glucosidase, α-galactosidase A, and α-l-iduronidase) could be quantified in dried blood spots by using a single assay buffer. METHODS: A 3-mm dried blood spot punch was incubated in a single assay buffer with 3 different substrates and internal standards. The sample was processed by a simple liquid-liquid extraction by using ethyl acetate. The extract was dried down and resuspended in solvent for injection into the tandem mass spectrometer. Products and internal standards were monitored by multiple reaction monitoring. RESULTS: Assay for the 3 lysosomal enzymes was successfully achieved with acceptable statistics. The assay can be performed by using a minimal quantity of disposable supplies and equipment. The entire procedure fits into a 48-h cycle including data analysis. Data from 5990 anonymous newborn dried blood spots showed an approximate bell-shaped distribution of enzymatic activities (mean values of 19.0, 11.5, and 3.5 µmol · h(-1) · (L blood)(-1) for α-glucosidase, α-galactosidase A, and α-l-iduronidase, respectively. Blank values obtained in the absence of blood were 0.13, 0.24, and 0.45 µmol · h(-1) · (L blood)(-1), respectively). By assaying 3 enzymes at once, problematic samples are spotted for reanalysis if enzyme activity values are low for all enzymes (for example, if insufficient blood is present in the assay). CONCLUSIONS: This method demonstrates that a triplex assay in a single buffer and with minimal supplies and labor can be adapted to a high-throughput newborn screening laboratory for the analysis of Pompe, Fabry, and mucopolysaccharidosis-I (Hurler) diseases.


Subject(s)
Fabry Disease/diagnosis , Glycogen Storage Disease Type II/diagnosis , Iduronidase/blood , Mucopolysaccharidosis I/diagnosis , alpha-Galactosidase/blood , alpha-Glucosidases/blood , Adult , Buffers , Fabry Disease/blood , Glycogen Storage Disease Type II/blood , Humans , Hydrogen-Ion Concentration , Infant , Infant, Newborn , Male , Mucopolysaccharidosis I/blood , Neonatal Screening , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...