Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Agric Food Chem ; 72(14): 7618-7628, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38538519

ABSTRACT

Beer has over 600 flavor compounds and creates a positive tasting experience with acceptable sensory properties, which are essential for the best consumer experience. Spontaneous and mixed-culture fermentation beers, generally classified as sour beers, are gaining popularity compared to typical lager or ale styles, which have dominated in the USA for the last few decades. Unique and acceptable flavor compounds characterize sour beers, but some unfavorable aspects appear in conjunction. One such unfavorable flavor is called "mousy". This description is usually labeled as an unpleasant odor, identifying spoilage of fermented food and beverages. It is related as having the odor of mouse urine, cereal, corn tortilla chips, or freshly baked sour bread. The main compounds responsible for it are N-heterocyclic compounds: 2-acetyltetrahydropyridine, 2-acetyl-1-pyrroline, and 2-ethyltetrahydropyridine. The most common beverages associated with mousy off-flavor are identified in wines, sour beers, other grain-based beverages, and kombucha, which may contain heterofermentative lactic acid bacteria, acetic acid bacteria, and/or yeast/fungus cultures. In particular, the fungal species Brettanomyces bruxellensis are associated with mousy-off flavor occurrence in fermented beverages matrices. However, many factors for N-heterocycle formation are not well-understood. Currently, the research and development of mixed-cultured beer and non/low alcohol beverages (NABLAB) has increased to obtain the highest quality, sensory, functionality, and most notably safety standards, and also to meet consumers' demand for a balanced sourness in these beverages. This paper introduces mousy off-flavor expression in beers and beverages, which occurs in spontaneous or mixed-culture fermentations, with a focus on sour beers due to common inconsistency aspects in fermentation. We discuss and suggest possible pathways of mousy off-flavor development in the beer matrix, which also apply to other fermented beverages, including non/low alcohol drinks, e.g., kombucha and low/nonalcohol beers. Some precautions and modifications may prevent the occurrence of these off-flavor compounds in the beverage matrix: improving raw material quality, adjusting brewing processes, and using specific strains of yeast and bacteria that are less likely to produce the off-flavor. Conceivably, it is clear that spontaneous and mixed culture fermentation is gaining popularity in industrial, craft, and home brewing. The review discusses important elements to identify and understand metabolic pathways, following the prevention of spoilage targeted to off-flavor compounds development in beers and NABLABs.


Subject(s)
Beer , Lactobacillales , Alcoholic Beverages , Bacteria , Beer/analysis , Fermentation , Saccharomyces cerevisiae/metabolism , Wine/analysis
2.
J Proteome Res ; 22(11): 3596-3606, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37821127

ABSTRACT

Sorghum (Sorghum bicolor), a grass native to Africa, is a popular alternative to barley for brewing beer. The importance of sorghum to beer brewing is increasing because it is a naturally gluten-free cereal, and climate change is expected to cause a reduction in the production of barley over the coming decades. However, there are challenges associated with the use of sorghum instead of barley in beer brewing. Here, we used proteomics and metabolomics to gain insights into the sorghum brewing process to advise processes for efficient beer production from sorghum. We found that during malting, sorghum synthesizes the amylases and proteases necessary for brewing. Proteomics revealed that mashing with sorghum malt required higher temperatures than barley malt for efficient protein solubilization. Both α- and ß-amylase were considerably less abundant in sorghum wort than in barley wort, correlating with lower maltose concentrations in sorghum wort. However, metabolomics revealed higher glucose concentrations in sorghum wort than in barley wort, consistent with the presence of an abundant α-glucosidase detected by proteomics in sorghum malt. Our results indicate that sorghum can be a viable grain for industrial fermented beverage production, but that its use requires careful process optimization for efficient production of fermentable wort and high-quality beer.


Subject(s)
Hordeum , Sorghum , Edible Grain , Sorghum/metabolism , alpha-Glucosidases/metabolism , Beer/analysis , Proteomics , Fermentation
3.
Front Plant Sci ; 14: 1172028, 2023.
Article in English | MEDLINE | ID: mdl-37377804

ABSTRACT

Cereal grains have been domesticated largely from food grains to feed and malting grains. Barley (Hordeum vulgare L.) remains unparalleled in its success as a primary brewing grain. However, there is renewed interest in "alternative" grains for brewing (and distilling) due to attention being placed on flavor, quality, and health (i.e., gluten issues) aspects that they may offer. This review covers basic and general information on "alternative grains" for malting and brewing, as well as an in-depth look at several major biochemical aspects of these grains including starch, protein, polyphenols, and lipids. These traits are described in terms of their effects on processing and flavor, as well as the prospects for improvement through breeding. These aspects have been studied extensively in barley, but little is known about the functional properties in other crops for malting and brewing. In addition, the complex nature of malting and brewing produces a large number of brewing targets but requires extensive processing, laboratory analysis, and accompanying sensory analysis. However, if a better understanding of the potential of alternative crops that can be used in malting and brewing is needed, then significantly more research is required.

4.
Food Chem ; 372: 131291, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34638062

ABSTRACT

White wheat salted noodles containing oats have a slower digestion rate those without oats, with potential health benefits. Oat ß-glucan may play an important role in this. Effects of sheeting and shearing during noodle-making and subsequent cooking on ß-glucan concentration, solubility, molecular size and starch digestibility were investigated. The levels of ß-glucan were reduced by 16% after cooking, due to the loss of ß-glucan into the cooking water. Both the noodle-making process and cooking increased the solubility of ß-glucan but did not change its average molecular size. Digestion profiles show that ß-glucan in wholemeal oat flour did not change starch digestion rates compared with isolated starch, but reduced the starch digestion rate of oat-fortified wheat noodles compared to the control (wheat noodles). Confocal laser scanning microscopy suggests that interaction between ß-glucan and protein contributes to the starch-protein matrix and changes noodle microstructure, and thus alters their digestibility.


Subject(s)
Starch , beta-Glucans , Avena , Cooking , Flour/analysis , Solubility
5.
J Proteomics ; 242: 104221, 2021 06 30.
Article in English | MEDLINE | ID: mdl-33866056

ABSTRACT

Germination is a critical process in the reproduction and propagation of flowering plants, and is also the key stage of industrial grain malting. Germination commences when seeds are steeped in water, followed by degradation of the endosperm cell walls, enzymatic digestion of starch and proteins to provide nutrients for the growing plant, and emergence of the radicle from the seed. Dormancy is a state where seeds fail to germinate upon steeping, but which prevents inappropriate premature germination of the seeds before harvest from the field. This can result in inefficiencies in industrial malting. We used Sequential Window Acquisition of all THeoretical ions Mass Spectrometry (SWATH-MS) proteomics to measure changes in the barley seed proteome throughout germination. We found a large number of proteins involved in desiccation tolerance and germination inhibition rapidly decreased in abundance after imbibition. This was followed by a decrease in proteins involved in lipid, protein and nutrient reservoir storage, consistent with induction and activation of systems for nutrient mobilisation to provide nutrients to the growing embryo. Dormant seeds that failed to germinate showed substantial biochemical activity distinct from that of seeds undergoing germination, with differences in sulfur metabolic enzymes, endogenous alpha-amylase/trypsin inhibitors, and histone proteins. We verified our findings with analysis of germinating barley seeds from two commercial malting facilities, demonstrating that key features of the dynamic proteome of germinating barley seeds were conserved between laboratory and industrial scales. The results provide a more detailed understanding of the changes in the barley proteome during germination and give possible target proteins for testing or to inform selective breeding to enhance germination or control dormancy. SIGNIFICANCE: Germination is critical to the reproduction and propagation of flowering plants, and in industrial malting. Dormancy, where seeds fail to germinate upon steeping, can result in inefficiencies in industrial malting. Our DIA/SWATH-MS proteomics analyses identified key changes during germination, including an initial loss of proteins involved in desiccation tolerance and germination inhibition, followed by decreases in lipid, protein and nutrient reservoir storage. These changes were consistent between laboratory and industrial malting scales, and therefore demonstrate the utility of laboratory-scale barley germination as a model system for industrial malt house processes. We also showed that dormant seeds that failed to germinate showed substantial biochemical activity distinct from that of seeds undergoing germination, consistent with dormancy being an actively regulated state. Our results provide a more detailed understanding of the changes in the barley proteome during germination and give possible target proteins for testing or to inform selective breeding to enhance germination or control dormancy.


Subject(s)
Germination , Hordeum , Heat-Shock Proteins , Nutrients , Plant Proteins , Proteomics , Seeds
6.
Foods ; 10(2)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498449

ABSTRACT

When wheat experiences a cold-temperature 'shock' during the late stage of grain filling, it triggers the abnormal synthesis of late-maturity α-amylase (LMA). This increases the enzyme content in affected grain, which can lead to a drastic reduction in falling number (FN). By commercial standards, a low FN is taken as an indication of inferior quality, deemed unsuitable for end-product usage. Hence, LMA-affected grains are either rejected or downgraded to feed grade at the grain receiving point. However, previous studies have found no substantial correlation between low FN-LMA and bread quality. The present study extends previous investigations to semi-solid food, evaluating the physical quality of fresh white sauce processed from LMA-affected flour. Results show that high-LMA flours had low FNs and exhibited poor pasting characteristics. However, gelation occurred in the presence of other components during fresh white sauce processing. This demonstrates that LMA-affected flours may have new applications in low-viscosity products.

7.
Food Chem ; 336: 127719, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-32768911

ABSTRACT

Wheat flour, consisting of a complex matrix of starch and protein, is used as a representative model of whole food here to investigate the binary interaction in relation to amylose level and hydrothermal treatment in noodles as a food exemplar. Noodle made of high-amylose wheat (HAW) flour showed an eight-fold higher resistant starch content, compared to the wild type. Protein removal under simulated intestinal digestion conditions resulted in higher starch digestion rate coefficients in raw and cooked flours. In cooked flours, the substrate becomes similarly accessible to digestive enzymes regardless of protein removal. The results indicate that the increased protein content in native HAW flour and thermal stability of starch in HAW noodles lead to higher food integrity and consequently enhance the resistance against α-amylase digestion. Overall, the study suggests that a diversity of starch-protein interactions in wheat-based food products underlies the nutritional value of natural whole foods.


Subject(s)
Amylose/metabolism , Plant Proteins/metabolism , Starch/metabolism , Triticum/metabolism , alpha-Amylases/metabolism , Cooking , Flour/analysis , Plant Proteins/chemistry , Starch/chemistry
8.
Parasit Vectors ; 13(1): 591, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33228768

ABSTRACT

BACKGROUND: Existing diagnostic methods for the parasitic gastrointestinal nematode, Haemonchus contortus, are time consuming and require specialised expertise, limiting their utility in the field. A practical, on-farm diagnostic tool could facilitate timely treatment decisions, thereby preventing losses in production and flock welfare. We previously demonstrated the ability of visible-near-infrared (Vis-NIR) spectroscopy to detect and quantify blood in sheep faeces with high accuracy. Here we report our investigation of whether variation in sheep type and environment affect the prediction accuracy of Vis-NIR spectroscopy in quantifying blood in faeces. METHODS: Visible-NIR spectra were obtained from worm-free sheep faeces collected from different environments and sheep types in South Australia (SA) and New South Wales, Australia and spiked with various sheep blood concentrations. Spectra were analysed using principal component analysis (PCA), and calibration models were built around the haemoglobin (Hb) wavelength region (387-609 nm) using partial least squares regression. Models were used to predict Hb concentrations in spiked faeces from SA and naturally infected sheep faeces from Queensland (QLD). Samples from QLD were quantified using Hemastix® test strip and FAMACHA© diagnostic test scores. RESULTS: Principal component analysis showed that location, class of sheep and pooled versus individual samples were factors affecting the Hb predictions. The models successfully differentiated 'healthy' SA samples from those requiring anthelmintic treatment with moderate to good prediction accuracy (sensitivity 57-94%, specificity 44-79%). The models were not predictive for blood in the naturally infected QLD samples, which may be due in part to variability of faecal background and blood chemistry between samples, or the difference in validation methods used for blood quantification. PCA of the QLD samples, however, identified a difference between samples containing high and low quantities of blood. CONCLUSION: This study demonstrates the potential of Vis-NIR spectroscopy for estimating blood concentration in faeces from various types of sheep and environmental backgrounds. However, the calibration models developed here did not capture sufficient environmental variation to accurately predict Hb in faeces collected from environments different to those used in the calibration model. Consequently, it will be necessary to establish models that incorporate samples that are more representative of areas where H. contortus is endemic.


Subject(s)
Environment , Feces/parasitology , Haemonchiasis/veterinary , Occult Blood , Sheep Diseases/diagnosis , Spectroscopy, Near-Infrared/methods , Age Factors , Animals , Female , Haemonchiasis/diagnosis , Hematocrit/veterinary , Hemoglobins/analysis , New South Wales/epidemiology , Principal Component Analysis , Queensland/epidemiology , Sheep , Sheep Diseases/epidemiology , Sheep Diseases/parasitology , Spectroscopy, Near-Infrared/standards , Spectroscopy, Near-Infrared/statistics & numerical data
9.
Food Chem ; 324: 126858, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32353656

ABSTRACT

Wheat flour noodles are sometimes fortified with ß-glucan for nutritional value, but this can decrease eating quality. The contributions of ß-glucan and starch molecular fine structure to physicochemical properties of wholemeal oat flour and to the texture of oat-fortified white salted noodles were investigated here. Hardness of oat-fortified noodles was controlled by the longer amylopectin chains (DP ≥ 26) and amount of longer amylose chains (DP ≥ 1000). Higher levels of ß-glucan, in the range from 3.1 to 5.2%, result in increased noodle hardness. Pasting viscosities of wholemeal oat flour positively correlate with the hardness of oat-fortified noodles. The swelling power of oat flour is not correlated with either pasting viscosities of oat flour or noodle hardness. Longer amylopectin chains and the amount of longer amylose chains both control the pasting viscosities of oat flour, which in turn affect noodle texture. This provides new means, based on starch and ß-glucan molecular structure, to choose oats with optimal starch structure and ß-glucan content for targeted oat-fortified noodle quality.


Subject(s)
Avena/metabolism , Starch/chemistry , Triticum/metabolism , beta-Glucans/chemistry , Amylopectin/chemistry , Amylose/chemistry , Flour/analysis , Hardness , Viscosity
10.
Int J Biol Macromol ; 136: 1125-1132, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31233794

ABSTRACT

Two varieties of barley samples were subjected to germination conditions to investigate the underlying mechanisms underpinning changes in molecular structure, chemical compositions and thermal properties of starch during this process. Starch thermal transitions were examined using differential scanning calorimetry, and the molecular fine structure of amylose and amylopectin were determined using size-exclusion chromatography and fluorophore-assisted carbohydrate electrophoresis, respectively. Both amylose and amylopectin chains were hydrolyzed during germination, but a preferential attack of amylopectin chains was observed with concomitant increases of relative amylose content, resulting in increased gelatinization temperatures (onset, peak, conclusion) and reduction in enthalpy change. Amylolytic enzyme activities increased during germination, resulting in decreased starch content. After malting, significant degradation of amylose chains followed by the reduction of gelatinization temperatures was seen. Roasting of pale malts was found to degrade starch and protein whilst completely stopping enzyme activities. The resulting coloured malts had extremely low starch enthalpy change due to the loss of amylopectin crystallinity at high temperature. This study provides insights into starch structural changes of barley throughout malting and roasting, which are determining factors for fermentable sugar production during mashing.


Subject(s)
Germination , Hordeum/metabolism , Starch/chemistry , Beer/microbiology , Hordeum/growth & development , Kinetics , Starch/metabolism , Temperature
11.
Anal Biochem ; 580: 30-35, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31181183

ABSTRACT

Barley is an important cereal grain used for beer brewing, animal feed, and human food consumption. Fungal disease can impact barley production, as it causes substantial yield loss and lowers seed quality. We used sequential window acquisition of all theoretical ions mass spectrometry (SWATH-MS) to measure and quantify the relative abundance of proteins within seeds of different barley varieties under various fungal pathogen burdens (ProteomeXchange Datasets PXD011303 and PXD014093). Fungal burden in the leaves and stems of barley resulted in changes to the seed proteome. However, these changes were minimal and showed substantial variation among barley samples infected with different pathogens. The limited effect of intrinsic disease resistance on the seed proteome is consistent with the main mediators of disease resistance being present in the leaves and stems of the plant. The seeds of barley varieties accredited for use as malt had higher levels of proteins associated with starch synthesis and beer quality. The proteomic workflows developed and implemented here have potential application in quality control, breeding and processing of barley, and other agricultural products.


Subject(s)
Fungi/pathogenicity , Hordeum , Plant Diseases/microbiology , Plant Proteins/metabolism , Australia , Hordeum/metabolism , Hordeum/microbiology , Plant Leaves/metabolism , Plant Stems/metabolism , Proteome , Proteomics/methods , Seeds/metabolism
12.
Food Microbiol ; 82: 82-88, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31027823

ABSTRACT

Different methods have been applied in controlling contamination of foods and feeds by the carcinogenic fungal toxin, aflatoxin, but nevertheless the problem remains pervasive in developing countries. Curcumin is a natural polyphenolic compound from the spice turmeric (Curcuma longa L.) that has been identified as an efficient photosensitiser for inactivation of Aspergillus flavus conidia. Curcumin mediated photoinactivation of A. flavus has revealed the potential of this technology to be an effective method for reducing population density of the aflatoxin-producing fungus in foods. This study demonstrates the influence of pH and temperature on efficiency of photoinactivation of the fungus and how treating spore-contaminated maize kernels affects aflatoxin production. The results show the efficiency of curcumin mediated photoinactivation of fungal conidia and hyphae were not affected by temperatures between 15 and 35 °C or pH range of 1.5-9.0. The production of aflatoxin B1 was significantly lower (p < 0.05), with an average of 82.4 µg/kg as compared to up to 305.9 µg/kg observed in untreated maize kept under similar conditions. The results of this study indicate that curcumin mediated photosensitization can potentially be applied under simple environmental conditions to achieve significant reduction of post-harvest contamination of aflatoxin B1 in maize.


Subject(s)
Aflatoxin B1/metabolism , Aspergillus flavus/drug effects , Aspergillus flavus/radiation effects , Curcumin/pharmacology , Photosensitivity Disorders , Zea mays/microbiology , Hydrogen-Ion Concentration , Hyphae/drug effects , Hyphae/radiation effects , Spores, Fungal/drug effects , Spores, Fungal/radiation effects , Temperature
13.
Carbohydr Polym ; 206: 583-592, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30553361

ABSTRACT

Ten barley samples containing varied protein contents were subject to malting followed by mashing to investigate molecular effects of both barley starch and starch- protein interactions on malting and mashing performances, and the underlying mechanism. Starch granular changes were examined using differential scanning calorimetry and scanning electron microscopy. The molecular fine structures of amylose and amylopectin from unmalted and malted grain were obtained using size-exclusion chromatography. The results showed that both amylose and amylopectin polymers were hydrolyzed at the same time during malting. Protein and amylose content in both unmalted and malted barley significant negatively correlated with fermentable sugar content after mashing. While protein content is currently the main criterion for choosing malting varieties, this study shows that information about starch molecular structure is also useful for determining the release of fermentable sugars, an important functional property. This provides brewers with some new methods to choose malting barley.

14.
J Proteome Res ; 17(4): 1647-1653, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29457908

ABSTRACT

Modern beer production is a complex industrial process. However, some of its biochemical details remain unclear. Using mass spectrometry proteomics, we have performed a global untargeted analysis of the proteins present across time during nanoscale beer production. Samples included sweet wort produced by a high temperature infusion mash, hopped wort, and bright beer. This analysis identified over 200 unique proteins from barley and yeast, emphasizing the complexity of the process and product. We then used data independent SWATH-MS to quantitatively compare the relative abundance of these proteins throughout the process. This identified large and significant changes in the proteome at each process step. These changes described enrichment of proteins by their biophysical properties, and identified the appearance of dominant yeast proteins during fermentation. Altered levels of malt modification also quantitatively changed the proteomes throughout the process. Detailed inspection of the proteomic data revealed that many proteins were modified by protease digestion, glycation, or oxidation during the processing steps. This work demonstrates the opportunities offered by modern mass spectrometry proteomics in understanding the ancient process of beer production.


Subject(s)
Beer/analysis , Proteins/analysis , Proteomics/methods , Food Handling , Fungal Proteins/analysis , Hordeum/chemistry , Oxidation-Reduction , Peptide Hydrolases/metabolism , Polysaccharides/metabolism , Proteins/metabolism
15.
Food Chem ; 241: 493-501, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-28958557

ABSTRACT

The conversion of barley starch to sugars is a complex enzymic process. Most previous work concerned the biotechnical aspect of in situ barley enzymes. However, the interactions among the macromolecular substrates and their effects on enzymic catalysis has been little examined. Here, we explore the mechanisms whereby interactions of protein and starch in barley flour affect the kinetics of enzymatic hydrolysis of starch in an in vitro system, using digestion rate data and structural analysis by confocal microscopy. The degradation kinetics of both uncooked barley flour and of purified starches are found to be two-step sequential processes. Barley proteins, especially the water-soluble component, are found to retard the digestion of starch degraded by α-amylase: the enzyme binds with water-insoluble protein and with starch granules, leading to reduced starch hydrolysis. These findings are of potential industrial value in both the brewing and food industries.


Subject(s)
Hordeum , alpha-Amylases/metabolism , Adsorption , Digestion , Flour , Hydrolysis , Starch
16.
Carbohydr Polym ; 172: 213-222, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28606528

ABSTRACT

Australian wild rices have significant genetic differences from domesticated rices, which might provide rices with different starch molecular structure and thus different functional properties. Molecular structure, gelatinization properties, and pasting behaviours of starch of three Australian wild rices (Oryza australiensis, taxa A (O. rufipogon like) and taxa B (O. meridionalis like)) were determined and compared to domesticated indica and japonica rice. These had higher amylose content, more shorter amylose chains and fewer short amylopectin chains, resulted in a high gelatinization temperature in these wild rices. Compared to domesticated japonica rice, taxa A had a lower pasting viscosity; taxa B had a similar pasting viscosity but lower final viscosity. The significantly different starch molecular structure from that of normal domesticated rices, and concomitantly different properties, suggest advantageous uses in products such as rice crackers or rice pudding, and a source of nutritionally-desirable slowly digestible starch.


Subject(s)
Oryza/chemistry , Starch/chemistry , Amylopectin/chemistry , Amylose/chemistry , Australia , Molecular Structure , Viscosity
17.
Carbohydr Polym ; 155: 271-279, 2017 Jan 02.
Article in English | MEDLINE | ID: mdl-27702512

ABSTRACT

Correlations among barley protein, starch molecular structure and grain size were determined using 30 barley samples with variable protein contents. Starch molecular structure was characterized by fluorophore-assisted carbohydrate electrophoresis and by size-exclusion chromatography (SEC, also termed GPC). The chain-length distributions of amylopectin were fitted using a mathematical model reflecting the relative activities of starch branching enzymes and starch synthase enzymes. Increased protein content significantly and negatively correlated with higher amounts of amylose with longer chains (degree of polymerization, DP 1600-40000) while barley grain sizes positively associated with starch contents. Protein content also positively correlated with the proportion of longer chains of amylopectin (DP 34-100). These results showed that the enzyme activities of starch synthases change with protein content, leading to altered starch contents, structures and grain sizes. From this perspective, selecting for large grain size (or low protein content) does not necessarily relate to starch structure, although may suggest long chains of amylopectin. Measuring starch structure could give a good indication of process performance in human food, animal feed and brewing, as all these structural features contribute to significant functional properties.

18.
J Agric Food Chem ; 64(47): 8959-8972, 2016 Nov 30.
Article in English | MEDLINE | ID: mdl-27933870

ABSTRACT

Mycotoxin contamination of foods and animal feeds is a worldwide problem for human and animal health. Controlling mycotoxin contamination has drawn the attention of scientists and other food and feed stakeholders all over the world. Despite best efforts targeting field and storage preventive measures, environmental conditions can still lead to mycotoxin contamination. This raises a need for developing decontamination methods to inactivate or remove the toxins from contaminated products. At present, decontamination methods applied include an array of both biological and nonbiological methods. The targeted use of nonbiological methods spans from the latter half of last century, when ammoniation and ozonation were first used to inactivate mycotoxins in animal feeds, to the novel techniques being developed today such as photosensitization. Effectiveness and drawbacks of different nonbiological methods have been reported in the literature, and this review examines the utility of these methods in addressing food safety. Particular consideration is given to the application of such methods in the developing world, where mycotoxin contamination is a serious food safety issue in staple crops such as maize and rice.


Subject(s)
Animal Feed/analysis , Decontamination/methods , Food Contamination/analysis , Food Safety , Mycotoxins/analysis , Animal Feed/microbiology , Animals , Crops, Agricultural , Food Microbiology , Humans
19.
Article in English | MEDLINE | ID: mdl-27264786

ABSTRACT

In vitro experimental environments are used to study interactions between microorganisms, and to predict dynamics in natural ecosystems. This study highlights that experimental in vitro environments should be selected to match closely the natural environment of interest during in vitro studies to strengthen extrapolations about aflatoxin production by Aspergillus and competing organisms. Fungal competition and aflatoxin accumulation were studied in soil, cotton wool or tube (water-only) environments, for Aspergillus flavus competition with Penicillium purpurogenum, Fusarium oxysporum or Sarocladium zeae within maize grains. Inoculated grains were incubated in each environment at two temperature regimes (25 and 30°C). Competition experiments showed interaction between the main effects of aflatoxin accumulation and the environment at 25°C, but not so at 30°C. However, competition experiments showed fungal populations were always interacting with their environments. Fungal survival differed after the 72-h incubation in different experimental environments. Whereas all fungi incubated within the soil environment survived, in the cotton wool environment none of the competitors of A. flavus survived at 30°C. With aflatoxin accumulation, F. oxysporum was the only fungus able to interdict aflatoxin production at both temperatures. This occurred only in the soil environment and fumonisins accumulated instead. Smallholder farmers in developing countries face serious mycotoxin contamination of their grains, and soil is a natural reservoir for the associated fungal propagules, and a drying and storage surface for grains on these farms. Studying fungal dynamics in the soil environment and other environments in vitro can provide insights into aflatoxin accumulation post-harvest.


Subject(s)
Aflatoxins/analysis , Aspergillus flavus/chemistry , Edible Grain/microbiology , Fumonisins/analysis , Mycotoxins/analysis , Zea mays/microbiology , Antibiosis , Aspergillus flavus/growth & development , Aspergillus flavus/pathogenicity , Cotton Fiber , Edible Grain/chemistry , Fusarium/chemistry , Fusarium/growth & development , Fusarium/pathogenicity , Penicillium/chemistry , Penicillium/growth & development , Penicillium/pathogenicity , Soil/chemistry , Soil Microbiology , Temperature , Water/chemistry , Water Microbiology , Zea mays/chemistry
20.
J Agric Food Chem ; 61(45): 10772-8, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24070227

ABSTRACT

Twenty-eight coffee samples from around the world were tested for caffeine levels to develop near-infrared reflectance spectroscopy (NIRS) calibrations for whole and ground coffee. Twenty-five individual beans from five of those coffees were used to develop a NIRS calibration for caffeine concentration in single beans. An international standard high-performance liquid chromatography method was used to analyze for caffeine content. Coffee is a legal stimulant and possesses a number of heath properties. However, there is variation in the level of caffeine in brewed coffee and other caffeinated beverages. Being able to sort beans on the basis of caffeine concentration will improve quality control in the level of caffeine in those beverages. The range in caffeine concentration was from 0.01 mg/g (decaffeinated coffee) to 19.9 mg/g (Italian coffee). The majority of coffees were around 10.0-12.0 mg/g. The NIRS results showed r(2) values for bulk unground and ground coffees were >0.90 with standard errors <2 mg/g. For the single-bean calibration the r(2) values were between 0.85 and 0.93 with standard errors of cross validation of 0.8-1.6 mg/g depending upon calibration. The results showed it was possible to develop NIRS calibrations to estimate the caffeine concentration of individual coffee beans. One application of this calibration could be sorting beans on caffeine concentration to provide greater quality control for high-end markets. Furthermore, bean sorting may open new markets for novel coffee products.


Subject(s)
Caffeine/analysis , Coffee/chemistry , Quality Control , Seeds/chemistry , Spectroscopy, Near-Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...