Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 197
Filter
1.
bioRxiv ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38617282

ABSTRACT

Human Immunodeficiency Virus (HIV) is widely acknowledged for its profound impact on the immune system. Although HIV primarily affects peripheral CD4 T cells, its influence on the central nervous system (CNS) cannot be overlooked. Within the brain, microglia and CNS-associated macrophages (CAMs) serve as the primary targets for HIV, as well as for the simian immunodeficiency virus (SIV) in nonhuman primates. This infection can lead to neurological effects and the establishment of a viral reservoir. Given the gaps in our understanding of how these cells respond in vivo to acute CNS infection, we conducted single-cell RNA sequencing (scRNA-seq) on myeloid cells from the brains of three rhesus macaques 12-days after SIV infection, along with three uninfected controls. Our analysis revealed six distinct microglial clusters including homeostatic microglia, preactivated microglia, and activated microglia expressing high levels of inflammatory and disease-related molecules. In response to acute SIV infection, the population of homeostatic and preactivated microglia decreased, while the activated and disease-related microglia increased. All microglial clusters exhibited upregulation of MHC class I molecules and interferon-related genes, indicating their crucial roles in defending against SIV during the acute phase. All microglia clusters also upregulated genes linked to cellular senescence. Additionally, we identified two distinct CAM populations: CD14lowCD16hi and CD14hiCD16low CAMs. Interestingly, during acute SIV infection, the dominant CAM population changed to one with an inflammatory phenotype. Notably, specific upregulated genes within one microglia and one macrophage cluster were associated with neurodegenerative pathways, suggesting potential links to neurocognitive disorders. This research sheds light on the intricate interactions between viral infection, innate immune responses, and the CNS, providing valuable insights for future investigations.

2.
Epilepsia ; 65(5): 1475-1487, 2024 May.
Article in English | MEDLINE | ID: mdl-38470097

ABSTRACT

OBJECTIVE: We previously demonstrated that interleukin-1 receptor-mediated immune activation contributes to seizure severity and memory loss in anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. In the present study, we assessed the role of the myeloid differentiation primary response gene 88 (MyD88), an adaptor protein in Toll-like receptor signaling, in the key phenotypic characteristics of anti-NMDAR encephalitis. METHODS: Monoclonal anti-NMDAR antibodies or control antibodies were infused into the lateral ventricle of MyD88 knockout mice (MyD88-/-) and control C56BL/6J mice (wild type [WT]) via osmotic minipumps for 2 weeks. Seizure responses were measured by electroencephalography. Upon completion of the infusion, the motor, anxiety, and memory functions of the mice were assessed. Astrocytic (glial fibrillary acidic protein [GFAP]) and microglial (ionized calcium-binding adaptor molecule 1 [Iba-1]) activation and transcriptional activation for the principal inflammatory mediators involved in seizures were determined using immunohistochemistry and quantitative real-time polymerase chain reaction, respectively. RESULTS: As shown before, 80% of WT mice infused with anti-NMDAR antibodies (n = 10) developed seizures (median = 11, interquartile range [IQR] = 3-25 in 2 weeks). In contrast, only three of 14 MyD88-/- mice (21.4%) had seizures (0, IQR = 0-.25, p = .01). The WT mice treated with antibodies also developed memory loss in the novel object recognition test, whereas such memory deficits were not apparent in MyD88-/- mice treated with anti-NMDAR antibodies (p = .03) or control antibodies (p = .04). Furthermore, in contrast to the WT mice exposed to anti-NMDAR antibodies, the MyD88-/- mice had a significantly lower induction of chemokine (C-C motif) ligand 2 (CCL2) in the hippocampus (p = .0001, Sidak tests). There were no significant changes in the expression of GFAP and Iba-1 in the MyD88-/- mice treated with anti-NMDAR or control antibodies. SIGNIFICANCE: These findings suggest that MyD88-mediated signaling contributes to the seizure and memory phenotype in anti-NMDAR encephalitis and that CCL2 activation may participate in the expression of these features. The removal of MyD88 inflammation may be protective and therapeutically relevant.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Disease Models, Animal , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88 , Seizures , Signal Transduction , Animals , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Mice , Seizures/metabolism , Seizures/immunology , Signal Transduction/physiology , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/immunology , Male , Electroencephalography , Calcium-Binding Proteins/metabolism , Glial Fibrillary Acidic Protein/metabolism , Microfilament Proteins/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/immunology , Cognitive Dysfunction/etiology
3.
Int J Mol Sci ; 25(4)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38397063

ABSTRACT

Persistent immune activation is linked to an increased risk of cardiovascular disease (CVD) in people with HIV (PWH) on antiretroviral therapy (ART). The NLRP3 inflammasome may contribute to elevated CVD risk in PWH. This study utilized peripheral blood mononuclear cells (PBMCs) from 25 PWH and 25 HIV-negative controls, as well as HIV in vitro infections. Transcriptional changes were analyzed using RNAseq and pathway analysis. Our results showed that in vitro HIV infection of macrophages and PBMCs from PWH had increased foam cell formation and expression of the NLRP3 inflammasome components and downstream cytokines (caspase-1, IL-1ß, and IL-18), which was reduced with inhibition of NLRP3 activity using MCC950. Transcriptomic analysis revealed an increased expression of multiple genes involved in lipid metabolism, cholesterol storage, coronary microcirculation disorders, ischemic events, and monocyte/macrophage differentiation and function with HIV infection and oxLDL treatment. HIV infection and NLRP3 activation increased foam cell formation and expression of proinflammatory cytokines, providing insights into the mechanisms underlying HIV-associated atherogenesis. This study suggests that HIV itself may contribute to increased CVD risk in PWH. Understanding the involvement of the inflammasome pathway in HIV atherosclerosis can help identify potential therapeutic targets to mitigate cardiovascular risks in PWH.


Subject(s)
Atherosclerosis , Foam Cells , HIV Infections , Humans , Atherosclerosis/immunology , Cytokines , Foam Cells/immunology , HIV Infections/complications , HIV Infections/immunology , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Leukocytes, Mononuclear/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
4.
Free Radic Biol Med ; 212: 322-329, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38142954

ABSTRACT

Even in the modern era of combination antiretroviral therapy, aberrations in motor control remain a predominant symptom contributing to age-related functional dependencies (e.g., neurocognitive impairment) in people with HIV (PWH). While recent evidence implicates aberrant mitochondrial redox environments in the modulation of neural oscillatory activity serving motor control in PWH, the contribution of important clinical and demographic factors on this bioenergetic-neural-behavioral pathway is unknown. Herein, we evaluate the predictive capacity of clinical metrics pertinent to HIV (e.g., CD4 nadir, time with viremia) and age on mitochondrial redox-regulated sensorimotor brain-behavior dynamics in 69 virally-suppressed PWH. We used state-of-the-art systems biology and neuroscience approaches, including Seahorse analyzer of mitochondrial energetics, EPR spectroscopy of intracellular oxidant levels, antioxidant activity assays pertinent to superoxide and hydrogen peroxide (H2O2) redox environments, and magnetoencephalographic (MEG) imaging to quantify sensorimotor oscillatory dynamics. Our results demonstrate differential effects of redox systems on the neural dynamics serving motor function in PWH. In addition, measures of immune stability and duration of compromise due to HIV had dissociable effects on this pathway, above and beyond the effects of age alone. Moreover, peripheral measures of antioxidant activity (i.e., superoxide dismutase) fully mediated the relationship between immune stability and current behavioral performance, indicative of persistent oxidative environments serving motor control in the presence of virologic suppression. Taken together, our data suggest that disease-related factors, in particular, are stronger predictors of current redox, neural and behavioral profiles serving motor function, which may serve as effective targets for alleviating HIV-specific alterations in cognitive-motor function in the future.


Subject(s)
Antioxidants , HIV Infections , Humans , Hydrogen Peroxide , HIV Infections/drug therapy , Oxidation-Reduction , Biomarkers
5.
Autophagy ; : 1-12, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38041584

ABSTRACT

The ubiquitin kinase-ligase pair PINK1-PRKN recognizes and transiently labels damaged mitochondria with ubiquitin phosphorylated at Ser65 (p-S65-Ub) to mediate their selective degradation (mitophagy). Complete loss of PINK1 or PRKN function unequivocally leads to early-onset Parkinson disease, but it is debated whether impairments in mitophagy contribute to disease later in life. While the pathway has been extensively studied in cell culture upon acute and massive mitochondrial stress, basal levels of activation under endogenous conditions and especially in vivo in the brain remain undetermined. Using rodent samples, patient-derived cells, and isogenic neurons, we here identified age-dependent, brain region-, and cell type-specific effects and determined expression levels and extent of basal and maximal activation of PINK1 and PRKN. Our work highlights the importance of defining critical risk and therapeutically relevant levels of PINK1-PRKN signaling which will further improve diagnosis and prognosis and will lead to better stratification of patients for future clinical trials.

6.
Clin Proteomics ; 20(1): 48, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37880620

ABSTRACT

BACKGROUND: Histones posttranslational modification represent an epigenetic mechanism that regulate gene expression and other cellular processes. Quantitative mass spectrometry used for the absolute quantification of such modifications provides further insight into cellular responses to extracellular insults such as infections or toxins. Methamphetamine (Meth), a drug of abuse, is affecting the overall function of the immune system. In this report, we developed, validated and applied a targeted, MS-based quantification assay to measure changes in histone H3 lysine 14 acetylation (H3K14Ac) during exposure of human primary macrophages to HIV-1 infection and/or Meth. METHODS: The quantification assay was developed and validated to determine H3K14Ac stoichiometry in histones that were isolated from the nuclei of control (CIC) and exposed to Meth before (CIM) or/and after (MIM) HIV-infection human monocyte-derived macrophages (hMDM) of six donors. It was based on LC-MS/MS measurement using multiple reaction monitoring (MRM) acquisition of the unmodified and acetylated form of lysine K14 of histone H3 9KSTGGKAPR17 peptides and the corresponding stable isotope labeled (SIL) heavy peptide standards of the same sequences. The histone samples were propionylated (Poy) pre- and post- trypsin digestion so that the sequences of the monitored peptides were: K[Poy]STGGK[1Ac]APR, K[Poy]STGGK[1Ac]APR-heavy, K[Poy]STGGK[Poy]APR and K[Poy]STGGK[Poy]APR-heavy. The absolute amounts of the acetylated and unmodified peptides were determined by comparing to the abundances of their SIL standards, that were added to the samples in the known concentrations, and, then used for calculation of H3K14Ac stoichiometry in CIC, CIM and MIM hMDM. RESULTS: The assay was characterized by LLOD of 0.106 fmol/µL and 0.204 fmol/µL for unmodified and acetylated H3 9KSTGGKAPR17 peptides, respectively. The LLOQ was 0.5 fmol/µL and the linear range of the assay was from 0.5 to 2500 fmol/µL. The absolute abundances of the quantified peptides varied between the donors and conditions, and so did the H3K14Ac stoichiometry. This was rather attributed to the samples nature itself, as the variability of their triplicate measurements was low. CONCLUSIONS: The developed LC-MS/MS assay enabled absolute quantification of H3K14Ac in exposed to Meth HIV-infected hMDM. It can be further applied determination of this PTM stoichiometry in other studies on human primary macrophages.

7.
Adv Biol (Weinh) ; 7(8): e2300154, 2023 08.
Article in English | MEDLINE | ID: mdl-37376822

ABSTRACT

Mitochondrial dysfunction has been implicated in neurodegenerative diseases like Parkinson's disease (PD). This study investigates the role of Parkin, a protein involved in mitochondrial quality control, and strongly linked to PD, in the context of mitochondrial DNA (mtDNA) mutations. Mitochondrial mutator mice (PolgD257A/D257A ) (Polg) are used and bred with Parkin knockout (PKO) mice or mice with disinhibited Parkin (W402A). In the brain, mtDNA mutations are analyzed in synaptosomes, presynaptic neuronal terminals, which are far from neuronal soma, which likely renders mitochondria there more vulnerable compared with brain homogenate. Surprisingly, PKO results in reduced mtDNA mutations in the brain but increased control region multimer (CRM) in synaptosomes. In the heart, both PKO and W402A lead to increased mutations, with W402A showing more mutations in the heart than PKO. Computational analysis reveals many of these mutations are deleterious. These findings suggest that Parkin plays a tissue-dependent role in regulating mtDNA damage response, with differential effects in the brain and heart. Understanding the specific role of Parkin in different tissues may provide insights into the underlying mechanisms of PD and potential therapeutic strategies. Further investigation into these pathways can enhance the understanding of neurodegenerative diseases associated with mitochondrial dysfunction.


Subject(s)
Brain , DNA Polymerase gamma , Genome, Mitochondrial , Heart , Ubiquitin-Protein Ligases , Animals , Mice , Mice, Inbred C57BL , Brain/metabolism , Mitochondria , Heteroplasmy , Mice, Knockout , DNA Polymerase gamma/genetics , Ubiquitin-Protein Ligases/genetics
8.
J Infect Dis ; 228(3): 276-280, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37073617

ABSTRACT

People with human immunodeficiency virus have an increased risk of developing cardiovascular disease. RNA-Seq was performed on hearts from simian immunodeficiency virus (SIV)-infected rhesus macaques with or without antiretroviral therapy (ART). SIV infection led to high plasma viral load with very little myocardial viral RNA. SIV infection promoted an inflammatory environment in the heart through interferon and pathogen signaling, in the absence of myocardial viral RNA. While ART dampened interferon and cytokine response in the heart, SIV-infected animals receiving ART had deficits in the expression of genes directly involved in fatty acid metabolism relative to SIV-uninfected animals.


Subject(s)
HIV Infections , Myocarditis , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Humans , Simian Immunodeficiency Virus/physiology , Simian Acquired Immunodeficiency Syndrome/complications , Simian Acquired Immunodeficiency Syndrome/drug therapy , Macaca mulatta , HIV Infections/complications , HIV Infections/drug therapy , Interferons , RNA, Viral , Inflammation , Viral Load
9.
Am J Pathol ; 193(4): 380-391, 2023 04.
Article in English | MEDLINE | ID: mdl-37003622

ABSTRACT

With the advent of antiretroviral therapy, improved survival of people with HIV (PWH) is accompanied with increased prevalence of HIV-associated comorbidities. Chronic lung anomalies are recognized as one of the most devastating sequelae in PWH. The limited available data describing the lung complications in PWH with a history of opioid abuse warrants more research to better define the course of disease pathogenesis. The current study was conducted to investigate the progression of lung tissue remodeling in a morphine (Mor)-exposed rhesus macaque model of SIV infection. Pathologic features of lung remodeling, including histopathologic changes, oxidative stress, inflammation, and proliferation of fibroblasts, were investigated in archival lung tissues of SIVmac-251/macaque model with or without Mor dependence. Lungs of Mor-exposed, SIV-infected macaques exhibited significant fibrotic changes and collagen deposition in the alveolar and the bronchiolar region. There was increased oxidative stress, profibrotic transforming growth factor-ß, fibroblast proliferation and trans-differentiation, epithelial-mesenchymal transition, and matrix degradation in SIV-infected macaques, which was further exacerbated in the lungs of Mor-exposed macaques. Interestingly, there was decreased inflammation-associated remodeling in Mor-dependent SIV-infected macaques compared with SIV-infected macaques that did not receive Mor. Thus, the current findings suggest that SIV independently induces fibrotic changes in macaque lungs, which is further aggravated by Mor.


Subject(s)
HIV Infections , Pneumonia , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Simian Acquired Immunodeficiency Syndrome/complications , Simian Acquired Immunodeficiency Syndrome/pathology , Macaca mulatta , HIV Infections/pathology , Lung/pathology , Inflammation/pathology , Pneumonia/pathology , Fibrosis , Morphine Derivatives
10.
J Infect Dis ; 227(Suppl 1): S48-S57, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36930638

ABSTRACT

Cognitive disorders are prevalent in people with HIV (PWH) despite antiretroviral therapy. Given the heterogeneity of cognitive disorders in PWH in the current era and evidence that these disorders have different etiologies and risk factors, scientific rationale is growing for using data-driven models to identify biologically defined subtypes (biotypes) of these disorders. Here, we discuss the state of science using machine learning to understand cognitive phenotypes in PWH and their associated comorbidities, biological mechanisms, and risk factors. We also discuss methods, example applications, challenges, and what will be required from the field to successfully incorporate machine learning in research on cognitive disorders in PWH. These topics were discussed at the National Institute of Mental Health meeting on "Biotypes of CNS Complications in People Living with HIV" held in October 2021. These ongoing research initiatives seek to explain the heterogeneity of cognitive phenotypes in PWH and their associated biological mechanisms to facilitate clinical management and tailored interventions.


Subject(s)
Cognition Disorders , Cognitive Dysfunction , HIV Infections , Humans , Cognitive Dysfunction/etiology , Machine Learning , Phenotype , Cognition , HIV Infections/complications , HIV Infections/drug therapy
11.
Brain Behav Immun ; 107: 265-275, 2023 01.
Article in English | MEDLINE | ID: mdl-36272499

ABSTRACT

Despite virologic suppression, people living with HIV (PLWH) remain at risk for developing cognitive impairment, with aberrations in motor control being a predominant symptom leading to functional dependencies in later life. While the neuroanatomical bases of motor dysfunction have recently been illuminated, the underlying molecular processes remain poorly understood. Herein, we evaluate the predictive capacity of the mitochondrial redox environment on sensorimotor brain-behavior dynamics in 40 virally-suppressed PLWH and 40 demographically-matched controls using structural equation modeling. We used state-of-the-art approaches, including Seahorse Analyzer of mitochondrial function, electron paramagnetic resonance spectroscopy to measure superoxide levels, antioxidant activity assays and dynamic magnetoencephalographic imaging to quantify sensorimotor oscillatory dynamics. We observed differential modulation of sensorimotor brain-behavior relationships by superoxide and hydrogen peroxide-sensitive features of the redox environment in PLWH, while only superoxide-sensitive features were related to optimal oscillatory response profiles and better motor performance in controls. Moreover, these divergent pathways may be attributable to immediate, separable mechanisms of action within the redox environment seen in PLWH, as evidenced by mediation analyses. These findings suggest that mitochondrial redox parameters are important modulators of healthy and pathological oscillations in motor systems and behavior, serving as potential targets for remedying HIV-related cognitive-motor dysfunction in the future.


Subject(s)
HIV Infections , Health Status , Humans , Brain , Mitochondria
12.
Aging (Albany NY) ; 14(24): 9818-9831, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36534452

ABSTRACT

BACKGROUND: Despite effective antiretroviral therapy, cognitive impairment and other aging-related comorbidities are more prevalent in people with HIV (PWH) than in the general population. Previous research examining DNA methylation has shown PWH exhibit accelerated biological aging. However, it is unclear how accelerated biological aging may affect neural oscillatory activity in virally suppressed PWH, and more broadly how such aberrant neural activity may impact neuropsychological performance. METHODS: In the present study, participants (n = 134) between the ages of 23 - 72 years underwent a neuropsychological assessment, a blood draw to determine biological age via DNA methylation, and a visuospatial processing task during magnetoencephalography (MEG). Our analyses focused on the relationship between biological age and oscillatory theta (4-8 Hz) and alpha (10 - 16 Hz) activity among PWH (n=65) and seronegative controls (n = 69). RESULTS: PWH had significantly elevated biological age when controlling for chronological age relative to controls. Biological age was differentially associated with theta oscillations in the left posterior cingulate cortex (PCC) and with alpha oscillations in the right medial prefrontal cortex (mPFC) among PWH and seronegative controls. Stronger alpha oscillations in the mPFC were associated with lower CD4 nadir and lower current CD4 counts, suggesting such responses were compensatory. Participants who were on combination antiretroviral therapy for longer had weaker theta oscillations in the PCC. CONCLUSIONS: These findings support the concept of interactions between biological aging and HIV status on the neural oscillatory dynamics serving visuospatial processing. Future work should elucidate the long-term trajectory and impact of accelerated aging on neural oscillatory dynamics in PWH.


Subject(s)
HIV Infections , Magnetic Resonance Imaging , Humans , Aged , Magnetoencephalography , Aging/physiology , HIV Infections/drug therapy , Epigenesis, Genetic
13.
Front Immunol ; 13: 1012884, 2022.
Article in English | MEDLINE | ID: mdl-36466814

ABSTRACT

The twin pandemics of opioid abuse and HIV infection can have devastating effects on physiological systems, including on the brain. Our previous work found that morphine increased the viral reservoir in the brains of treated SIV-infected macaques. In this study, we investigated the interaction of morphine and SIV to identify novel host-specific targets using a multimodal approach. We probed systemic parameters and performed single-cell examination of the targets for infection in the brain, microglia and macrophages. Morphine treatment created an immunosuppressive environment, blunting initial responses to infection, which persisted during antiretroviral treatment. Antiretroviral drug concentrations and penetration into the cerebrospinal fluid and brain were unchanged by morphine treatment. Interestingly, the transcriptional signature of both microglia and brain macrophages was transformed to one of a neurodegenerative phenotype. Notably, the expression of osteopontin, a pleiotropic cytokine, was significantly elevated in microglia. This was especially notable in the white matter, which is also dually affected by HIV and opioids. Increased osteopontin expression was linked to numerous HIV neuropathogenic mechanisms, including those that can maintain a viral reservoir. The opioid morphine is detrimental to SIV/HIV infection, especially in the brain.


Subject(s)
HIV Infections , Morphine , Animals , Morphine/pharmacology , Osteopontin/genetics , Brain , Analgesics, Opioid , Anti-Retroviral Agents , Macaca , Gene Expression
14.
Aging (Albany NY) ; 14(20): 8205-8220, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36227148

ABSTRACT

The aging process is associated with changes in mechanisms maintaining physiology, influenced by genetics and lifestyle, and impacting late life quality and longevity. Brain health is critical in healthy aging. Sirtuin 1 (Sirt1), a histone deacetylase with silencing properties, is one of the molecular determinants experimentally linked to health and longevity. We compared brain pathogenesis and Sirt1-chromatin binding dynamics in brain pre-frontal cortex from 2 groups of elder rhesus macaques, divided by age of necropsy: shorter-lived animals (18-20 years old (yo)), equivalent to 60-70 human yo; and longer-lived animals (23-29 yo), corresponding to 80-100 human yo and modeling successful aging. These were compared with young adult brains (4-7 yo). Our findings indicated drastic differences in the microglia marker Iba1, along with factors influencing Sirt1 levels and activity, such as CD38 (an enzyme limiting NAD that controls Sirt1 activity) and mir142 (a microRNA targeting Sirt1 transcription) between the elder groups. Iba1 was lower in shorter-lived animals than in the other groups, while CD38 was higher in both aging groups compared to young. mir142 and Sirt1 levels were inversely correlated in longer-lived brains (>23yo), but not in shorter-lived brains (18-20 yo). We also found that Sirt1 binding showed signs of better efficiency in longer-lived animals compared to shorter-lived ones, in genes associated with nuclear activity and senescence. Overall, differences in neuroinflammation and Sirt1 interactions with chromatin distinguished shorter- and longer-lived animals, suggesting the importance of preserving microglia and Sirt1 functional efficiency for longevity.


Subject(s)
Microglia , Sirtuin 1 , Aged , Animals , Humans , Chromatin/metabolism , Longevity/genetics , Macaca mulatta , Microglia/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Middle Aged
15.
J Leukoc Biol ; 112(5): 969-981, 2022 11.
Article in English | MEDLINE | ID: mdl-35686500

ABSTRACT

Microglia and macrophages are essential for homeostatic maintenance and innate immune response in the brain. They are the first line of defense against infections such as HIV/SIV in the brain. However, they are susceptible to infection and function as viral reservoirs even under effective viral suppression. While current antiretroviral regimens successfully suppress viremia and improve quality of life and lifespan, neurologic complications persist and are in part attributed to activated microglia. We sought to test the hypothesis that brain microglia return to a more homeostatic-like state when viremia is suppressed by combination antiretroviral therapy. Using the SIV-rhesus macaque model, we combined single-cell RNA sequencing, bioinformatics, and pathway analysis to compare gene expression profiles of brain myeloid cells under 4 conditions: uninfected, SIV infected, SIV infected with cART suppression, and SIV encephalitis (SIVE). Our study reveals greater myeloid diversity and an elevated proinflammatory state are associated with untreated SIV infection compared with uninfected animals. The development of encephalitis and suppression of viremia both reduced myeloid diversity. However, they had converse effects on the activation state of microglia and inflammation. Notably, suggestive of a restoration of a homeostatic state in microglia, gene expression and activation of pathways related to inflammation and immune response in cART-suppressed monkeys were most similar to that in uninfected monkeys. Untreated SIV infection shared characteristics, especially in brain macrophages to SIVE, with SIVE showing dramatic inflammation. In support of our hypothesis, our study demonstrates that cART indeed restores this key component of the brain's homeostatic state. Summary: ScRNA-seq of rhesus monkey microglia reveals clusters of cells in activated states in the setting of SIV infection, which is primarily reversed by suppressing viremia with combination antiretroviral therapy.


Subject(s)
Encephalitis , HIV Infections , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/drug therapy , Microglia , Viremia/drug therapy , Quality of Life , Encephalitis/complications , Viral Load
16.
Front Mol Neurosci ; 15: 852368, 2022.
Article in English | MEDLINE | ID: mdl-35359570

ABSTRACT

Neurogenerative disorders, such as Alzheimer's disease (AD), represent a growing public health challenge in aging societies. Tauopathies, a subset of neurodegenerative disorders that includes AD, are characterized by accumulation of fibrillar and hyperphosphorylated forms of microtubule-associated protein tau with coincident mitochondrial abnormalities and neuronal dysfunction. Although, in vitro, tau impairs axonal transport altering mitochondrial distribution, clear in vivo mechanisms associating tau and mitochondrial dysfunction remain obscure. Herein, we investigated the effects of human tau on brain mitochondria in vivo using transgenic htau mice at ages preceding and coinciding with onset of tauopathy. Subcellular proteomics combined with bioenergetic assessment revealed pathologic forms of tau preferentially associate with synaptic over non-synaptic mitochondria coinciding with changes in bioenergetics, reminiscent of an aged synaptic mitochondrial phenotype in wild-type mice. While mitochondrial content was unaltered, mitochondrial maximal respiration was impaired in synaptosomes from htau mice. Further, mitochondria-associated tau was determined to be outer membrane-associated using the trypsin protection assay and carbonate extraction. These findings reveal non-mutant human tau accumulation at the synapse has deleterious effects on mitochondria, which likely contributes to synaptic dysfunction observed in the context of tauopathy.

17.
J Neurovirol ; 28(1): 99-112, 2022 02.
Article in English | MEDLINE | ID: mdl-35175539

ABSTRACT

Macrophages are key elements of the innate immune system. Their HIV-1 infection is a complex process that involves multiple interacting factors and various steps and is further altered by exposure of infected cells to methamphetamine (Meth), a common drug of abuse in people living with HIV. This is reflected by dynamic changes in the intracellular and secreted proteomes of these cells. Quantification of these changes poses a challenge for experimental design and associated analytics. In this study, we measured the effect of Meth on expression of intracellular and secreted galectins-1, -3, and -9 in HIV-1 infected human monocyte-derived macrophages (hMDM) using SWATH-MS, which was further followed by MRM targeted mass spectrometry validation. Cells were exposed to Meth either prior to or after infection. Our results are the first to perform comprehensive quantifications of galectins in primary hMDM cells during HIV-1 infection and Meth exposure a building foundation for future studies on the molecular mechanisms underlying cellular pathology of hMDM resulting from viral infection and a drug of abuse-Meth.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Methamphetamine , Humans , Macrophages , Methamphetamine/metabolism , Methamphetamine/pharmacology
18.
Int J STD AIDS ; 33(1): 38-47, 2022 01.
Article in English | MEDLINE | ID: mdl-34565257

ABSTRACT

Despite the widespread use of combination antiretroviral therapy (cART), HIV-associated neurocognitive impairment (NCI) remains a health concern. However, limited research has been done to identify factors associated with neurocognitive decline. We assessed risk factors associated with neurocognitive decline in people living with HIV using a definition of decline that is statistically easy to adopt, is based on a commonly used neuropsychological cut-off and may be clinically relevant. Cox proportional hazards modeling was performed using the CNS HIV Antiretroviral Therapy Effects Research (CHARTER) study database. 581 participants were followed for up to 12 years. Neurocognitive decline was defined as the first observed drop in global T-scores of at least 2.67. Lifetime methamphetamine use had the strongest association with neurocognitive decline (adjusted Hazard Ratio; aHR = 1.48; 95% CI = 0.92-2.39) followed by no current antiretroviral medication use (aHR = 1.32; 95% CI = 0.91-1.92). Other risk factors included Hispanic ethnicity, lifetime history of major depressive disorder, lifetime cannabis use, hepatitis-C infection, and difficulty eating, dressing, bathing, or using the toilet. Results indicate that consistent use of ART may be of high significance to preserving neurocognition. Furthermore, Hispanic patients, those with a history of depression and substance use, and those having difficulty in essential activities of daily living may require vigilant follow-up.


Subject(s)
Depressive Disorder, Major , HIV Infections , Activities of Daily Living , Antiretroviral Therapy, Highly Active , Depressive Disorder, Major/complications , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/epidemiology , Humans , Neuropsychological Tests
19.
J Neuroimmune Pharmacol ; 17(1-2): 3-14, 2022 06.
Article in English | MEDLINE | ID: mdl-33788119

ABSTRACT

People living with the human immunodeficiency virus (HIV) have an elevated risk of opioid misuse due to both prescriptions for HIV-associated chronic pain and because injection drug use remains a primary mode of HIV transmission. HIV pathogenesis is characterized by chronic immune activation and microbial dysbiosis, and translocation across the gut barrier exacerbating inflammation. Despite the high rate of co-occurrence, little is known about the microbiome during chronic opioid use in the context of HIV and combination antiretroviral therapy (cART). We recently demonstrated the reduction of the CD4 + T-cell reservoir in lymphoid tissues but increased in microglia/macrophage reservoirs in CNS by using morphine-treated, simian immunodeficiency virus (SIV)-infected rhesus macaques with viremia suppressed by cART. To understand whether morphine may perturb the gut-brain axis, fecal samples were collected at necropsy, DNA isolated, and 16S rRNA sequenced and changes of the microbiome analyzed. We found that morphine treatment led to dysbiosis, primarily characterized by expansion of Bacteroidetes, particularly Prevotellaceae, at the expense of Firmicutes and other members of healthy microbial communities resulting in a lower α-diversity. Of the many genera in Prevotellaceae, the differences between the saline and morphine group were primarily due to a higher relative abundance of Prevotella_9, the taxa most similar to Prevotella copri, an inflammatory pathobiont in the human microbiome. These findings reinforce previous research showing that opioid abuse is associated with dysbiosis, therefore, warranting additional future research to elucidate the complex interaction between the host and opioid abuse during HIV and SIV infection.


Subject(s)
HIV Infections , Opioid-Related Disorders , Humans , Animals , Analgesics, Opioid/toxicity , RNA, Ribosomal, 16S , Macaca mulatta
20.
J Extracell Vesicles ; 10(14): e12177, 2021 12.
Article in English | MEDLINE | ID: mdl-34913274

ABSTRACT

Extracellular vesicles (EVs), which express a repertoire of cargo molecules (cf. proteins, microRNA, lipids, etc.), have been garnering a prominent role in the modulation of several cellular processes. Here, using both non-human primate and rodent model systems, we provide evidence that brain-derived EV (BDE) miRNA, miR-29a-3p (mir-29a), is significantly increased during chronic methamphetamine (MA) exposure. Further, miR-29a levels show significant increase both with drug-seeking and reinstatement in a rat MA self-administration model. We also show that EV-associated miR-29a is enriched in EV pool comprising of small EVs and exomeres and further plays a critical role in MA-induced inflammation and synaptodendritic damage. Furthermore, treatment with the anti-inflammatory drug ibudilast (AV411), which is known to reduce MA relapse, decreased the expression of miR-29a and subsequently attenuated inflammation and rescued synaptodendritic injury. Finally, using plasma from MUD subjects, we provide translational evidence that EV-miR29a could potentially serve as a biomarker to detect neuronal damage in humans diagnosed with MA use disorder (MUD). In summary, our work suggests that EV-associated miR-29a-3p plays a crucial role in MUD and might be used as a potential blood-based biomarker for detecting chronic inflammation and synaptic damage.


Subject(s)
Extracellular Vesicles/metabolism , Methamphetamine/adverse effects , MicroRNAs/adverse effects , Animals , Chronic Disease , Humans , Macaca mulatta
SELECTION OF CITATIONS
SEARCH DETAIL
...