Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
EClinicalMedicine ; 71: 102490, 2024 May.
Article in English | MEDLINE | ID: mdl-38813445

ABSTRACT

Background: Urinary tract infections (UTI) affect approximately 250 million people annually worldwide. Patients often experience a cycle of antimicrobial treatment and recurrent UTI (rUTI) that is thought to be facilitated by a gut reservoir of uropathogenic Escherichia coli (UPEC). Methods: 125 patients with UTI caused by an antibiotic-resistant organism (ARO) were enrolled from July 2016 to May 2019 in a longitudinal, multi-center cohort study. Multivariate statistical models were used to assess the relationship between uropathogen colonization and recurrent UTI (rUTI), controlling for clinical characteristics. 644 stool samples and 895 UPEC isolates were interrogated for taxonomic composition, antimicrobial resistance genes, and phenotypic resistance. Cohort UTI gut microbiome profiles were compared against published healthy and UTI reference microbiomes, as well as assessed within-cohort for timepoint- and recurrence-specific differences. Findings: Risk of rUTI was not independently associated with clinical characteristics. The UTI gut microbiome was distinct from healthy reference microbiomes in both taxonomic composition and antimicrobial resistance gene (ARG) burden, with 11 differentially abundant taxa at the genus level. rUTI and non-rUTI gut microbiomes in the cohort did not generally differ, but gut microbiomes from urinary tract colonized patients were elevated in E. coli abundance 7-14 days post-antimicrobial treatment. Corresponding UPEC gut isolates from urinary tract colonizing lineages showed elevated phenotypic resistance against 11 of 23 tested drugs compared to non-colonizing lineages. Interpretation: The gut microbiome is implicated in UPEC urinary tract colonization during rUTI, serving as an ARG-enriched reservoir for UPEC. UPEC can asymptomatically colonize the gut and urinary tract, and post-antimicrobial blooms of gut E. coli among urinary tract colonized patients suggest that cross-habitat migration of UPEC is an important mechanism of rUTI. Thus, treatment duration and UPEC populations in both the urinary and gastrointestinal tract should be considered in treating rUTI and developing novel therapeutics. Funding: This work was supported in part by awards from the U.S. Centers for Disease Control and Prevention Epicenter Prevention Program (grant U54CK000482; principal investigator, V.J.F.); to J.H.K. from the Longer Life Foundation (an RGA/Washington University partnership), the National Center for Advancing Translational Sciences (grants KL2TR002346 and UL1TR002345), and the National Institute of Allergy and Infectious Diseases (NIAID) (grant K23A1137321) of the National Institutes of Health (NIH); and to G.D. from NIAID (grant R01AI123394) and the Eunice Kennedy Shriver National Institute of Child Health and Human Development (grant R01HD092414) of NIH. R.T.'s research was funded by the Deutsche Forschungsgemeinschaft (DFG; German Research Foundation; grant 402733540). REDCap is Supported by Clinical and Translational Science Award (CTSA) Grant UL1 TR002345 and Siteman Comprehensive Cancer Center and NCI Cancer Center Support Grant P30 CA091842. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

2.
EClinicalMedicine ; 54: 101698, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36277312

ABSTRACT

Background: Traditional approaches for surgical site infection (SSI) surveillance have deficiencies that delay detection of SSI outbreaks and other clinically important increases in SSI rates. We investigated whether use of optimised statistical process control (SPC) methods and feedback for SSI surveillance would decrease rates of SSI in a network of US community hospitals. Methods: We conducted a stepped wedge cluster randomised trial of patients who underwent any of 13 types of common surgical procedures across 29 community hospitals in the Southeastern United States. We divided the 13 procedures into six clusters; a cluster of procedures at a single hospital was the unit of randomisation and analysis. In total, 105 clusters were randomised to 12 groups of 8-10 clusters. All participating clusters began the trial in a 12-month baseline period of control or "traditional" SSI surveillance, including prospective analysis of SSI rates and consultative support for SSI outbreaks and investigations. Thereafter, a group of clusters transitioned from control to intervention surveillance every three months until all clusters received the intervention. Electronic randomisation by the study statistician determined the sequence by which clusters crossed over from control to intervention surveillance. The intervention was the addition of weekly application of optimised SPC methods and feedback to existing traditional SSI surveillance methods. Epidemiologists were blinded to hospital identity and randomisation status while adjudicating SPC signals of increased SSI rates, but blinding was not possible during SSI investigations. The primary outcome was the overall SSI prevalence rate (PR=SSIs/100 procedures), evaluated via generalised estimating equations with a Poisson regression model. Secondary outcomes compared traditional and optimised SPC signals that identified SSI rate increases, including the number of formal SSI investigations generated and deficiencies identified in best practices for SSI prevention. This trial was registered at ClinicalTrials.gov, NCT03075813. Findings: Between Mar 1, 2016, and Feb 29, 2020, 204,233 unique patients underwent 237,704 surgical procedures. 148,365 procedures received traditional SSI surveillance and feedback alone, and 89,339 procedures additionally received the intervention of optimised SPC surveillance. The primary outcome of SSI was assessed for all procedures performed within participating clusters. SSIs occurred after 1171 procedures assigned control surveillance (prevalence rate [PR] 0.79 per 100 procedures), compared to 781 procedures that received the intervention (PR 0·87 per 100 procedures; model-based PR ratio 1.10, 95% CI 0.94-1.30, p=0.25). Traditional surveillance generated 24 formal SSI investigations that identified 120 SSIs with deficiencies in two or more perioperative best practices for SSI prevention. In comparison, optimised SPC surveillance generated 74 formal investigations that identified 458 SSIs with multiple best practice deficiencies. Interpretation: The addition of optimised SPC methods and feedback to traditional methods for SSI surveillance led to greater detection of important SSI rate increases and best practice deficiencies but did not decrease SSI rates. Additional research is needed to determine how to best utilise SPC methods and feedback to improve adherence to SSI quality measures and prevent SSIs. Funding: Agency for Healthcare Research and Quality.

3.
Cell Host Microbe ; 30(7): 1034-1047.e6, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35545083

ABSTRACT

Large-scale genomic studies have identified within-host adaptation as a hallmark of bacterial infections. However, the impact of physiological, metabolic, and immunological differences between distinct niches on the pathoadaptation of opportunistic pathogens remains elusive. Here, we profile the within-host adaptation and evolutionary trajectories of 976 isolates representing 119 lineages of uropathogenic Escherichia coli (UPEC) sampled longitudinally from both the gastrointestinal and urinary tracts of 123 patients with urinary tract infections. We show that lineages persisting in both niches within a patient exhibit increased allelic diversity. Habitat-specific selection results in niche-specific adaptive mutations and genes, putatively mediating fitness in either environment. Within-lineage inter-habitat genomic plasticity mediated by mobile genetic elements (MGEs) provides the opportunistic pathogen with a mechanism to adapt to the physiological conditions of either habitat, and reduced MGE richness is associated with recurrence in gut-adapted UPEC lineages. Collectively, our results establish niche-specific adaptation as a driver of UPEC within-host evolution.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Host Adaptation , Urinary Tract Infections , Uropathogenic Escherichia coli , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Host Adaptation/genetics , Humans , Interspersed Repetitive Sequences , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/genetics
4.
Infect Control Hosp Epidemiol ; 42(4): 467-470, 2021 04.
Article in English | MEDLINE | ID: mdl-33040748

ABSTRACT

Multiple guidelines recommend discontinuation of prophylactic antibiotics <24 hours after surgery. In a multicenter, retrospective cohort of 2,954 mastectomy patients ± immediate breast reconstruction, we found that utilization of prophylactic postdischarge antibiotics varied dramatically at the surgeon level among general surgeons and was virtually universal among plastic surgeons.


Subject(s)
Breast Neoplasms , Mammaplasty , Surgeons , Aftercare , Anti-Bacterial Agents/therapeutic use , Breast Neoplasms/surgery , Female , Humans , Mastectomy , Patient Discharge , Retrospective Studies
5.
Trials ; 21(1): 894, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33115527

ABSTRACT

BACKGROUND: Surgical site infections (SSIs) cause significant patient suffering. Surveillance and feedback of SSI rates is an evidence-based strategy to reduce SSIs, but traditional surveillance methods are slow and prone to bias. The objective of this cluster randomized controlled trial (RCT) is to determine if using optimized statistical process control (SPC) charts for SSI surveillance and feedback lead to a reduction in SSI rates compared to traditional surveillance. METHODS: The Early 2RIS Trial is a prospective, multicenter cluster RCT using a stepped wedge design. The trial will be performed in 29 hospitals in the Duke Infection Control Outreach Network (DICON) and 105 clusters over 4 years, from March 2016 through February 2020; year one represents a baseline period; thereafter, 8-9 clusters will be randomized to intervention every 3 months over a 3-year period using a stepped wedge randomization design. All patients who undergo one of 13 targeted procedures at study hospitals will be included in the analysis; these procedures will be included in one of six clusters: cardiac, orthopedic, gastrointestinal, OB-GYN, vascular, and spinal. All clusters will undergo traditional surveillance for SSIs; once randomized to intervention, clusters will also undergo surveillance and feedback using optimized SPC charts. Feedback on surveillance data will be provided to all clusters, regardless of allocation or type of surveillance. The primary endpoint is the difference in rates of SSI between the SPC intervention compared to traditional surveillance and feedback alone. DISCUSSION: The traditional approach for SSI surveillance and feedback has several major deficiencies because SSIs are rare events. First, traditional statistical methods require aggregation of measurements over time, which delays analysis until enough data accumulate. Second, traditional statistical tests and resulting p values are difficult to interpret. Third, analyses based on average SSI rates during predefined time periods have limited ability to rapidly identify important, real-time trends. Thus, standard analytic methods that compare average SSI rates between arbitrarily designated time intervals may not identify an important SSI rate increase on time unless the "signal" is very strong. Therefore, novel strategies for early identification and investigation of SSI rate increases are needed to decrease SSI rates. While SPC charts are used throughout industry and healthcare to improve and optimize processes, including other types of healthcare-associated infections, they have not been evaluated as a tool for SSI surveillance and feedback in a randomized trial. TRIAL REGISTRATION: ClinicalTrials.gov NCT03075813 , Registered March 9, 2017.


Subject(s)
Cross Infection , Surgical Wound Infection , Cross Infection/diagnosis , Cross Infection/prevention & control , Humans , Infection Control , Risk Assessment , Surgical Wound Infection/diagnosis , Surgical Wound Infection/prevention & control
6.
Infect Control Hosp Epidemiol ; 41(7): 789-798, 2020 07.
Article in English | MEDLINE | ID: mdl-32366333

ABSTRACT

OBJECTIVE: Despite recommendations to discontinue prophylactic antibiotics after incision closure or <24 hours after surgery, prophylactic antibiotics are continued after discharge by some clinicians. The objective of this study was to determine the prevalence and factors associated with postdischarge prophylactic antibiotic use after spinal fusion. DESIGN: Multicenter retrospective cohort study. PATIENTS: This study included patients aged ≥18 years undergoing spinal fusion or refusion between July 2011 and June 2015 at 3 sites. Patients with an infection during the surgical admission were excluded. METHODS: Prophylactic antibiotics were identified at discharge. Factors associated with postdischarge prophylactic antibiotic use were identified using hierarchical generalized linear models. RESULTS: In total, 8,652 spinal fusion admissions were included. Antibiotics were prescribed at discharge in 289 admissions (3.3%). The most commonly prescribed antibiotics were trimethoprim/sulfamethoxazole (22.1%), cephalexin (18.8%), and ciprofloxacin (17.1%). Adjusted for study site, significant factors associated with prophylactic discharge antibiotics included American Society of Anesthesiologists (ASA) class ≥3 (odds ratio [OR], 1.31; 95% CI, 1.00-1.70), lymphoma (OR, 2.57; 95% CI, 1.11-5.98), solid tumor (OR, 3.63; 95% CI, 1.62-8.14), morbid obesity (OR, 1.64; 95% CI, 1.09-2.47), paralysis (OR, 2.38; 95% CI, 1.30-4.37), hematoma/seroma (OR, 2.93; 95% CI, 1.17-7.33), thoracic surgery (OR, 1.39; 95% CI, 1.01-1.93), longer length of stay, and intraoperative antibiotics. CONCLUSIONS: Postdischarge prophylactic antibiotics were uncommon after spinal fusion. Patient and perioperative factors were associated with continuation of prophylactic antibiotics after hospital discharge.


Subject(s)
Aftercare , Anti-Bacterial Agents/therapeutic use , Antibiotic Prophylaxis , Spinal Fusion , Aged , Female , Humans , Male , Medicare , Middle Aged , Patient Discharge , Retrospective Studies , Surgical Wound Infection/drug therapy , United States
SELECTION OF CITATIONS
SEARCH DETAIL