Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters











Publication year range
1.
Expert Opin Biol Ther ; : 1-10, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39259182

ABSTRACT

INTRODUCTION: Follicular lymphoma (FL) is an indolent non-Hodgkin lymphoma that shows a progressive increase in relapses and refractory in its natural history and a median survival of approximately 18-20 years. The advent of anti-CD20 monoclonal antibodies has changed the FL therapeutic algorithm, with an increase in progression-free survival. T-cell-dependent bispecific antibodies (BsAbs) represent an emerging drug class against FL. AREAS COVERED: In this review, we selected papers from the principal databases (PubMed, Medline, Medscape, ASCO, ESMO) between January 2021 and June 2024, using the keywords 'mosunetuzumab' and 'follicular lymphoma' to provide an overview of mosunetuzumab-axgb, a pioneering BsAb. Its mechanism of action, efficacy, safety, and future perspectives were analyzed. EXPERT OPINION: Mosunetuzumab grants a directing T-cell mediated cytotoxicity and allows a step-up dosing that reduces adverse events, such as cytokine release syndrome, with promising tolerability. At the same time, it improves outcomes in the evolving landscape of FL management, even in post-CAR-T FL patients. Prognostic factors and targetable mechanisms of resistance need to be explored.

2.
Haematologica ; 2024 07 11.
Article in English | MEDLINE | ID: mdl-38988264

ABSTRACT

Multiple myeloma (MM) is a dreadful disease, marked by the uncontrolled proliferation of clonal plasma cells (PCs) within the bone marrow (BM). MM is characterized by a highly heterogeneous clinical and molecular background, supported by severe genomic alterations. Important deregulation of long non-coding RNAs (lncRNAs) expression has been reported in MM patients, influencing progression and therapy resistance. NEAT1 is a lncRNA essential for nuclear paraspeckles and involved in gene expression regulation. We showed that NEAT1 supports MM proliferation making this lncRNA an attractive therapeutic candidate. Here, we used a combinatorial strategy integrating transcriptomic and computational approaches with functional high-throughput drug screening, to identify compounds that synergize with NEAT1 inhibition in restraining MM cells growth. AUKA inhibitors were identified as top-scoring drugs in these analyses. We showed that the combination of NEAT1 silencing and AURKA inhibitors in MM profoundly impairs microtubule organization and mitotic spindle assembly, finally leading to cell death. Analysis of the large publicly CoMMpass dataset showed that in MM patients AURKA expression is strongly associated with reduced progression-free (p < 0.0001) and overall survival probability (p < 0.0001) and patients displaying high expression levels of both NEAT1 and AURKA have a worse clinical outcome. Finally, using RNA-sequencing data from NEAT1 knockdown (KD) MM cells, we identified the AURKA allosteric regulator TPX2 as a new NEAT1 target in MM and as a mediator of the interplay between AURKA and NEAT1, therefore providing a possible explanation of the synergistic activity observed upon their combinatorial inhibition.

3.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928153

ABSTRACT

The interaction of programmed death-1 (PD-1) on T lymphocytes with its ligands Programmed Death Ligand 1 (PD-L1) and Programmed Death Ligand 2 (PD-L2) on tumor cells and/or tumor-associated macrophages results in inhibitory signals to the T-cell receptor pathway, consequently causing tumor immune escape. PD-L1/PD-L2 are currently used as predictive tissue biomarkers in clinical practice. Virtually PD-L1 levels expressed by tumor cells are associated with a good response to immune checkpoint blockade therapies targeting the PD-1/PD-L1 axis. These therapies restore T-cell antitumor immune response by releasing T-lymphocytes from the inhibitory effects of tumor cells. Immune checkpoint therapies have completely changed the management of patients with solid cancers. This therapeutic strategy is less used in hematological malignancies, although good results have been achieved in some settings, such as refractory/relapsed classic Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Variable results have been obtained in diffuse large B-cell lymphoma and T-cell lymphomas. Immunohistochemistry represents the main technique for assessing PD-L1 expression on tumor cells. This review aims to describe the current knowledge of PD-L1 expression in various types of lymphomas, focusing on the principal mechanisms underlying PD-L1 overexpression, its prognostic significance and practical issues concerning the evaluation of PD-L1 immunohistochemical results in lymphomas.


Subject(s)
B7-H1 Antigen , Lymphoma , Humans , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Lymphoma/metabolism , Lymphoma/genetics , Lymphoma/pathology , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Immune Checkpoint Inhibitors/therapeutic use
4.
Nucleic Acids Res ; 52(11): 6171-6182, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38597676

ABSTRACT

Chromatin modifiers are emerging as major determinants of many types of cancers, including Anaplastic Large Cell Lymphomas (ALCL), a family of highly heterogeneous T-cell lymphomas for which therapeutic options are still limited. HELLS is a multifunctional chromatin remodeling protein that affects genomic instability by participating in the DNA damage response. Although the transcriptional function of HELLS has been suggested, no clues on how HELLS controls transcription are currently available. In this study, by integrating different multi-omics and functional approaches, we characterized the transcriptional landscape of HELLS in ALCL. We explored the clinical impact of its transcriptional program in a large cohort of 44 patients with ALCL. We demonstrated that HELLS, loaded at the level of intronic regions of target promoters, facilitates RNA Polymerase II (RNAPII) progression along the gene bodies by reducing the persistence of co-transcriptional R-loops and promoting DNA damage resolution. Importantly, selective knockdown of HELLS sensitizes ALCL cells to different chemotherapeutic agents, showing a synergistic effect. Collectively, our work unveils the role of HELLS in acting as a gatekeeper of ALCL genome stability providing a rationale for drug design.


Subject(s)
DNA Damage , R-Loop Structures , RNA Polymerase II , Transcription, Genetic , Humans , RNA Polymerase II/metabolism , Cell Line, Tumor , Genomic Instability/genetics , Lymphoma, Large-Cell, Anaplastic/genetics , Lymphoma, Large-Cell, Anaplastic/pathology , Lymphoma, Large-Cell, Anaplastic/metabolism , Gene Expression Regulation, Neoplastic , DNA Helicases/genetics , DNA Helicases/metabolism , Promoter Regions, Genetic , Lymphoma, T-Cell/genetics , Lymphoma, T-Cell/metabolism , Lymphoma, T-Cell/pathology
5.
Expert Opin Pharmacother ; 25(5): 521-528, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38623844

ABSTRACT

INTRODUCTION: Myelofibrosis (MF) is a hematologic disease characterized by bone marrow fibrosis, cytopenias, splenomegaly, and constitutional symptoms. Recent years have seen the emergence of novel therapeutic agents, notably ruxolitinib and fedratinib, which target the Janus kinases (JAK) pathway. However, their myelosuppressive effect coupled with the persistence, and even worsening anemia remains a significant challenge, leading usually to treatment discontinuation. AREAS COVERED: This review focuses on Momelotinib (MMB), a unique JAK inhibitor that has shown promise in MF treatment, particularly in improving anemia. MMB inhibits type 1 kinase activin A receptor or activin receptor-like kinase-2 (ACVR1/ALK2), with consequent rebalancing of the SMAD pathways and reduced transcription of hepcidin. Moreover, it seems that MMB could reduce the serum levels of several inflammatory cytokines responsible for anemia. Clinical trials have demonstrated MMB's efficacy in reducing spleen size, alleviating symptoms, and improving anemia, with a favorable safety profile compared to other JAK inhibitors, both in treatment-naïve and in pre-treated patients. EXPERT OPINION: Due to its mechanism of action, MMB represents a valuable therapeutic option in MF, addressing the clinical challenge of anemia and potentially improving outcomes for patients with hematologic malignancies. Ongoing research explores MMB's potential in acute myeloid leukemia and combination therapies.


Subject(s)
Primary Myelofibrosis , Pyrimidines , Humans , Primary Myelofibrosis/drug therapy , Primary Myelofibrosis/metabolism , Pyrimidines/therapeutic use , Pyrimidines/pharmacology , Animals , Benzamides/therapeutic use , Benzamides/pharmacology , Janus Kinase Inhibitors/therapeutic use , Janus Kinase Inhibitors/pharmacology , Anemia/drug therapy , Bridged-Ring Compounds
6.
Front Cell Dev Biol ; 12: 1391078, 2024.
Article in English | MEDLINE | ID: mdl-38596359

ABSTRACT

Myeloproliferative neoplasms (MPNs) are subdivided into Philadelphia (Ph) chromosome-positive chronic myeloid leukemia (CML) and Ph-negative MPNs. BCR::ABL1 translocation is essential for the development and diagnosis of CML; on the other hand, the majority of Ph-negative MPNs are characterized by generally mutually exclusive mutations of Janus kinase 2 (JAK2), calreticulin (CALR), or thrombopoietin receptor/myeloproliferative leukemia (MPL). CALR mutations have been described essentially in JAK2 and MPL wild-type essential thrombocythemia and primary myelofibrosis. Rarely coexisting CALR and MPL mutations have been found in Ph-negative MPNs. BCR::ABL1 translocation and JAK2 mutations were initially considered mutually exclusive genomic events, but a discrete number of cases with the combination of these genetic alterations have been reported. The presence of BCR::ABL1 translocation with a coexisting CALR mutation is even more uncommon. Herein, starting from a routinely diagnosed case of CALR-mutated primary myelofibrosis subsequently acquiring BCR::ABL1 translocation, we performed a comprehensive review of the literature, discussing the clinicopathologic and molecular features, as well as the outcome and treatment of cases with BCR::ABL1 and CALR co-occurrence.

7.
Haematologica ; 109(1): 231-244, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37439377

ABSTRACT

DIS3 gene mutations occur in approximately 10% of patients with multiple myeloma (MM); furthermore, DIS3 expression can be affected by monosomy 13 and del(13q), found in roughly 40% of MM cases. Despite the high incidence of DIS3 mutations and deletions, the biological significance of DIS3 and its contribution to MM pathogenesis remain poorly understood. In this study we investigated the functional role of DIS3 in MM, by exploiting a loss-of-function approach in human MM cell lines. We found that DIS3 knockdown inhibits proliferation in MM cell lines and largely affects cell cycle progression of MM plasma cells, ultimately inducing a significant increase in the percentage of cells in the G0/G1 phase and a decrease in the S and G2/M phases. DIS3 plays an important role not only in the control of the MM plasma cell cycle, but also in the centrosome duplication cycle, which are strictly co-regulated in physiological conditions in the G1 phase. Indeed, DIS3 silencing leads to the formation of supernumerary centrosomes accompanied by the assembly of multipolar spindles during mitosis. In MM, centrosome amplification is present in about a third of patients and may represent a mechanism leading to genomic instability. These findings strongly prompt further studies investigating the relevance of DIS3 in the centrosome duplication process. Indeed, a combination of DIS3 defects and deficient spindle-assembly checkpoint can allow cells to progress through the cell cycle without proper chromosome segregation, generating aneuploid cells which ultimately lead to the development of MM.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/pathology , Centrosome/metabolism , Centrosome/pathology , Mitosis , Cell Cycle/genetics , Genomic Instability , Exosome Multienzyme Ribonuclease Complex/metabolism
8.
Cancers (Basel) ; 15(15)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37568745

ABSTRACT

Hematological neoplasms sharing a blastic morphology may involve the skin. The skin may be either the primary site of occurrence of hematological malignancies with blastic features or cutaneous lesions are the first manifestation of an underlying systemic malignancy. The assessment of skin biopsies of hematological neoplasms with blastic features poses diagnostic problems and requires expert hematopathologists considering a wide range of differential diagnoses. The precise diagnosis of diseases sharing blastic features but with different outcomes and requiring distinct therapies is essential for patient management. The present paper mainly focuses on cutaneous involvement of the blastoid variant of mantle cell lymphoma and lymphoblastic lymphoma of B-cell or T-cell origin. The relevant literature has been reviewed and the clinical aspects, pathological features, prognosis, and therapy of both blastoid mantle cell lymphoma and lymphoblastic lymphoma involving the skin are discussed. A focus on other hematological entities with blastic features, which may involve the skin, to be taken into consideration in differential diagnosis is also given.

9.
Haematologica ; 108(12): 3333-3346, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37381763

ABSTRACT

Long non-coding RNA (lncRNA) are emerging as powerful and versatile regulators of transcriptional programs and distinctive biomarkers of progression of T-cell lymphoma. Their role in the aggressive anaplastic lymphoma kinase-negative (ALK-) subtype of anaplastic large cell lymphoma (ALCL) has been elucidated only in part. Starting from our previously identified ALCL-associated lncRNA signature and performing digital gene expression profiling of a retrospective cohort of ALCL, we defined an 11 lncRNA signature able to discriminate among ALCL subtypes. We selected a not previously characterized lncRNA, MTAAT, with preferential expression in ALK- ALCL, for molecular and functional studies. We demonstrated that lncRNA MTAAT contributes to an aberrant mitochondrial turnover restraining mitophagy and promoting cellular proliferation. Functionally, lncRNA MTAAT acts as a repressor of a set of genes related to mitochondrial quality control via chromatin reorganization. Collectively, our work demonstrates the transcriptional role of lncRNA MTAAT in orchestrating a complex transcriptional program sustaining the progression of ALK- ALCL.


Subject(s)
Lymphoma, Large-Cell, Anaplastic , Lymphoma, T-Cell, Peripheral , RNA, Long Noncoding , Humans , Receptor Protein-Tyrosine Kinases/genetics , Anaplastic Lymphoma Kinase/genetics , RNA, Long Noncoding/genetics , Mitophagy/genetics , Retrospective Studies , Lymphoma, Large-Cell, Anaplastic/pathology
SELECTION OF CITATIONS
SEARCH DETAIL