Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Histol Histopathol ; : 18763, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38832442

ABSTRACT

Bone defects are due to trauma, infections, tumors, or aging, including bone fractures, bone metastases, osteoporosis, or osteoarthritis. The global burden of these demands research into innovative strategies that overcome the limitations of conventional autografts. In this sense, the development of three-dimensional (3D) bioprinting has emerged as a promising approach in the field of tissue engineering and regenerative medicine (TERM) for the on-demand generation and transplantation of tissues and organs, including bone. It combines biological materials and living cells, which are precisely positioned layer by layer. Despite obtaining some promising results, 3D bioprinting of bone tissue still faces several challenges, such as generating an effective vascular network to increase tissue viability. In this review, we aim to collect the main knowledge on methods and techniques of 3D bioprinting. Then, we will review the main biomaterials, their composition, and the rationale for their application in 3D bioprinting for the TERM of bone.

2.
Curr Issues Mol Biol ; 46(5): 3839-3865, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38785507

ABSTRACT

Pancreatic cancer is a type of gastrointestinal tumor with a growing incidence and mortality worldwide. Pancreatic ductal adenocarcinoma (PDAC) constitutes 90% of cases, and late-stage diagnosis is common, leading to a 5-year survival rate of less than 10% in high-income countries. The use of biomarkers has different proven translational applications, facilitating early diagnosis, accurate prognosis and identification of potential therapeutic targets. Several studies have shown a correlation between the tissue expression levels of various molecules, measured through immunohistochemistry (IHC), and survival rates in PDAC. Following the hallmarks of cancer, epigenetic and metabolic reprogramming, together with immune evasion and tumor-promoted inflammation, plays a critical role in cancer initiation and development. In this study, we aim to explore via IHC and Kaplan-Meier analyses the prognostic value of various epigenetic-related markers (histones 3 and 4 (H3/H4), histone acetyl transferase 1 (HAT-1), Anti-Silencing Function 1 protein (ASF1), Nuclear Autoantigenic Sperm Protein (NASP), Retinol Binding Protein 7 (RBBP7), importin 4 (IPO4) and IPO5), metabolic regulators (Phosphoglycerate mutase (PGAM)) and inflammatory mediators (allograft inflammatory factor 1 (AIF-1), interleukin 10 (IL-10), IL-12A and IL-18) in patients with PDAC. Also, through a correlation analysis, we have explored the possible interconnections in the expression levels of these molecules. Our results show that higher expression levels of these molecules are directly associated with poorer survival rates in PDAC patients, except in the case of IL-10, which shows an inverse association with mortality. HAT1 was the molecule more clearly associated with mortality, with a hazard risk of 21.74. The correlogram demonstrates an important correlation between almost all molecules studied (except in the case of IL-18), highlighting potential interactions between these molecules. Overall, our study demonstrates the relevance of including different markers from IHC techniques in order to identify unexplored molecules to develop more accurate prognosis methods and possible targeted therapies. Additionally, our correlation analysis reveals potential interactions among these markers, offering insights into PDAC's pathogenesis and paving the way for targeted therapies tailored to individual patient profiles. Future studies should be conducted to confirm the prognostic value of these components in PDAC in a broader sample size, as well as to evaluate the possible biological networks connecting them.

3.
Antioxidants (Basel) ; 13(5)2024 May 11.
Article in English | MEDLINE | ID: mdl-38790696

ABSTRACT

Preeclampsia, a serious and potentially life-threatening medical complication occurring during pregnancy, is characterized by hypertension and often accompanied by proteinuria and multiorgan dysfunction. It is classified into two subtypes based on the timing of diagnosis: early-onset (EO-PE) and late-onset preeclampsia (LO-PE). Despite being less severe and exhibiting distinct pathophysiological characteristics, LO-PE is more prevalent than EO-PE, although both conditions have a significant impact on placental health. Previous research indicates that different pathophysiological events within the placenta may contribute to the development of preeclampsia across multiple pathways. In our experimental study, we investigated markers of oxidative stress, ferroptosis, and lipid peroxidation pathways in placental tissue samples obtained from women with LO-PE (n = 68) compared to healthy control pregnant women (HC, n = 43). Through a comprehensive analysis, we observed an upregulation of specific molecules associated with these pathways, including NADPH oxidase 1 (NOX-1), NADPH oxidase 2 (NOX-2), transferrin receptor protein 1 (TFRC), arachidonate 5-lipoxygenase (ALOX-5), acyl-CoA synthetase long-chain family member 4 (ACSL-4), glutathione peroxidase 4 (GPX4) and malondialdehyde (MDA) in women with LO-PE. Furthermore, increased ferric tissue deposition (Fe3+) was observed in placenta samples stained with Perls' Prussian blue. The assessment involved gene and protein expression analyses conducted through RT-qPCR experiments and immunohistochemistry assays. Our findings underscore the heightened activation of inflammatory pathways in LO-PE compared to HC, highlighting the pathological mechanisms underlying this pregnancy disorder.

4.
Int J Mol Sci ; 25(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38791563

ABSTRACT

Chronic venous disease (CVD) comprises a spectrum of morphofunctional disorders affecting the venous system, affecting approximately 1 in 3 women during gestation. Emerging evidence highlights diverse maternofetal implications stemming from CVD, particularly impacting the placenta. While systemic inflammation has been associated with pregnancy-related CVD, preliminary findings suggest a potential link between this condition and exacerbated inflammation in the placental tissue. Inflammasomes are major orchestrators of immune responses and inflammation in different organs and systems. Notwithstanding the relevance of inflammasomes, specifically the NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3)- which has been demonstrated in the placentas of women with different obstetric complications, the precise involvement of this component in the placentas of women with CVD remains to be explored. This study employs immunohistochemistry and real-time PCR (RT-qPCR) to examine the gene and protein expression of key components in both canonical and non-canonical pathways of the NLRP3 inflammasome (NLRP3, ASC-apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain-caspase 1, caspase 5, caspase 8, and interleukin 1ß) within the placental tissue of women affected by CVD. Our findings reveal a substantial upregulation of these components in CVD-affected placentas, indicating a potential pathophysiological role of the NLRP3 inflammasome in the development of this condition. Subsequent investigations should focus on assessing translational interventions addressing this dysregulation in affected patient populations.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Placenta , Humans , Female , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pregnancy , Placenta/metabolism , Placenta/pathology , Inflammasomes/metabolism , Adult , Chronic Disease , Vascular Diseases/metabolism , Vascular Diseases/pathology , Vascular Diseases/etiology , Pregnancy Complications, Cardiovascular/metabolism , Pregnancy Complications, Cardiovascular/pathology , Interleukin-1beta/metabolism , Interleukin-1beta/genetics
5.
Int J Biol Sci ; 20(7): 2532-2554, 2024.
Article in English | MEDLINE | ID: mdl-38725847

ABSTRACT

Autophagy plays a critical role in maintaining cellular homeostasis and responding to various stress conditions by the degradation of intracellular components. In this narrative review, we provide a comprehensive overview of autophagy's cellular and molecular basis, biological significance, pharmacological modulation, and its relevance in lifestyle medicine. We delve into the intricate molecular mechanisms that govern autophagy, including macroautophagy, microautophagy and chaperone-mediated autophagy. Moreover, we highlight the biological significance of autophagy in aging, immunity, metabolism, apoptosis, tissue differentiation and systemic diseases, such as neurodegenerative or cardiovascular diseases and cancer. We also discuss the latest advancements in pharmacological modulation of autophagy and their potential implications in clinical settings. Finally, we explore the intimate connection between lifestyle factors and autophagy, emphasizing how nutrition, exercise, sleep patterns and environmental factors can significantly impact the autophagic process. The integration of lifestyle medicine into autophagy research opens new avenues for promoting health and longevity through personalized interventions.


Subject(s)
Autophagy , Life Style , Humans , Animals , Aging , Neurodegenerative Diseases/metabolism
6.
Front Psychol ; 15: 1387162, 2024.
Article in English | MEDLINE | ID: mdl-38817830

ABSTRACT

The connection between physical activity and cognitive function has become a focus of attention in educational research in recent years. Regular exercise has been shown to have significant positive effects on physical health, but it also appears to have a significant impact on cognitive function and academic performance. Of all the exercise modalities, resistance training has drawn interest for its ability to improve cerebral abilities in addition to physical well-being. However, there is limited available knowledge exploring the relationship between resistance training regimens and academic performance. This narrative review aims to investigate the underlying mechanisms linking resistance training to academic performance. Firstly, we will examine the biological mechanisms and psychosocial links that potentially connect resistance training to academic performance to find and describe the different mechanisms by which resistance training improves academic performance. In the next part of the work, we delve into the existing observational and intervention studies that have explored the relationship between resistance training and academic performance. Lastly, we provide practical recommendations for including resistance training in institutional education settings, emphasizing the need of dispelling myths and addressing barriers to increase participation as well as the relevance of considering key training variables and adaptation of protocols to developmental stages, always guided by a properly trained professional. Overall, the available evidence supports that resistance training provides potential benefits to the academic performance of youth students with many biological and psychosocial factors that explain this relationship. However, most of the studies are observational, and broader interventional studies are needed to understand and maximize the benefits of this type of physical exercise.

7.
Front Psychiatry ; 15: 1282026, 2024.
Article in English | MEDLINE | ID: mdl-38566955

ABSTRACT

Introduction: Cocaine abuse represents a major public health concern. The social perception of cocaine has been changing over the decades, a phenomenon closely tied to its patterns of use and abuse. Twitter is a valuable tool to understand the status of drug use and abuse globally. However, no specific studies discussing cocaine have been conducted on this platform. Methods: 111,508 English and Spanish tweets containing "cocaine" from 2018 to 2022 were analyzed. 550 were manually studied, and the largest subset underwent automated classification. Then, tweets related to cocaine were analyzed to examine their content, types of Twitter users, usage patterns, health effects, and personal experiences. Geolocation data was also considered to understand regional differences. Results: A total of 71,844 classifiable tweets were obtained. Among these, 15.95% of users discussed the harm of cocaine consumption to health. Media outlets had the highest number of tweets (35.11%) and the most frequent theme was social/political denunciation (67.88%). Regarding the experience related to consumption, there are more tweets with a negative sentiment. The 9.03% of tweets explicitly mention frequent use of the drug. The continent with the highest number of tweets was America (55.44% of the total). Discussion: The findings underscore the significance of cocaine as a current social and political issue, with a predominant focus on political and social denunciation in the majority of tweets. Notably, the study reveals a concentration of tweets from the United States and South American countries, reflecting the high prevalence of cocaine-related disorders and overdose cases in these regions. Alarmingly, the study highlights the trivialization of cocaine consumption on Twitter, accompanied by a misleading promotion of its health benefits, emphasizing the urgent need for targeted interventions and antidrug content on social media platforms. Finally, the unexpected advocacy for cocaine by healthcare professionals raises concerns about potential drug abuse within this demographic, warranting further investigation.

8.
Int J Med Sci ; 21(5): 848-861, 2024.
Article in English | MEDLINE | ID: mdl-38617004

ABSTRACT

Sudden infant death syndrome (SIDS) is a type of death that occurs suddenly and without any apparent explanation, affecting infants between 28 days of life and up to a year. Recognition of this entity includes performing an autopsy to determine if there is another explanation for the event and performing both an external and internal examination of the different tissues to search for possible histopathological findings. Despite the relative success of awareness campaigns and the implementation of prevention measures, SIDS still represents one of the leading causes of death among infants worldwide. In addition, although the development of different techniques has made it possible to make significant progress in the characterization of the etiopathogenic mechanisms underlying SIDS, there are still many unknowns to be resolved in this regard and the integrative consideration of this syndrome represents an enormous challenge to face both from a point of view scientific and medical view as humanitarian. For all these reasons, this paper aims to summarize the most relevant current knowledge of SIDS, exploring from the base the characterization and recognition of this condition, its forensic findings, its risk factors, and the main prevention measures to be implemented. Likewise, an attempt will be made to analyze the causes and pathological mechanisms associated with SIDS, as well as potential approaches and future paths that must be followed to reduce the impact of this condition.


Subject(s)
Sudden Infant Death , Infant , Humans , Sudden Infant Death/epidemiology , Sudden Infant Death/etiology , Knowledge , Risk Factors , Syndrome
9.
Biomolecules ; 14(3)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38540696

ABSTRACT

Calcification is a process of accumulation of calcium in tissues and deposition of calcium salts by the crystallization of PO43- and ionized calcium (Ca2+). It is a crucial process in the development of bones and teeth. However, pathological calcification can occur in almost any soft tissue of the organism. The better studied is vascular calcification, where calcium salts can accumulate in the intima or medial layer or in aortic valves, and it is associated with higher mortality and cardiovascular events, including myocardial infarction, stroke, aortic and peripheral artery disease (PAD), and diabetes or chronic kidney disease (CKD), among others. The process involves an intricate interplay of different cellular components, endothelial cells (ECs), vascular smooth muscle cells (VSMCs), fibroblasts, and pericytes, concurrent with the activation of several signaling pathways, calcium, Wnt, BMP/Smad, and Notch, and the regulation by different molecular mediators, growth factors (GFs), osteogenic factors and matrix vesicles (MVs). In the present review, we aim to explore the cellular players, molecular pathways, biomarkers, and clinical treatment strategies associated with vascular calcification to provide a current and comprehensive overview of the topic.


Subject(s)
Calcium , Vascular Calcification , Humans , Calcium/metabolism , Endothelial Cells/metabolism , Salts , Signal Transduction , Vascular Calcification/metabolism , Cells, Cultured
10.
Front Genet ; 15: 1345459, 2024.
Article in English | MEDLINE | ID: mdl-38469117

ABSTRACT

Vascular diseases pose major health challenges, and understanding their underlying molecular mechanisms is essential to advance therapeutic interventions. Cellular senescence, a hallmark of aging, is a cellular state characterized by cell-cycle arrest, a senescence-associated secretory phenotype macromolecular damage, and metabolic dysregulation. Vascular senescence has been demonstrated to play a key role in different vascular diseases, such as atherosclerosis, peripheral arterial disease, hypertension, stroke, diabetes, chronic venous disease, and venous ulcers. Even though cellular senescence was first described in 1961, significant gaps persist in comprehending the epigenetic mechanisms driving vascular senescence and its subsequent inflammatory response. Through a comprehensive analysis, we aim to elucidate these knowledge gaps by exploring the network of epigenetic alterations that contribute to vascular senescence. In addition, we describe the consequent inflammatory cascades triggered by these epigenetic modifications. Finally, we explore translational applications involving biomarkers of vascular senescence and the emerging field of senotherapy targeting this biological process.

11.
Int J Mol Sci ; 25(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38396708

ABSTRACT

Preeclampsia (PE) is a serious hypertensive disorder affecting 4-5% of pregnancies globally, leading to maternal and perinatal morbidity and mortality and reducing life expectancy in surviving women post-gestation. Late-onset PE (LO-PE) is a clinical type of PE diagnosed after 34 weeks of gestation, being less severe than the early-onset PE (EO-PE) variant, although both entities have a notable impact on the placenta. Despite the fact that most studies have focused on EO-PE, LO-PE does not deserve less attention since its prevalence is much higher and little is known about the role of the placenta in this pathology. Via RT-qPCR and immunohistochemistry methods, we measured the gene and protein expressions of several macroautophagy markers in the chorionic villi of placentas from women who underwent LO-PE (n = 68) and compared them to normal pregnancies (n = 43). We observed a markedly distinct expression pattern, noticing a significant drop in NUP62 expression and a considerable rise in the gene and protein expressions of ULK1, ATG9A, LC3, ATG5, STX-17, and LAMP-1 in the placentas of women with LO-PE. A major induction of autophagic processes was found in the placental tissue of patients with LO-PE. Abnormal signaling expression of these molecular patterns in this condition aids in the understanding of the complexity of pathophysiology and proposes biomarkers for the clinical management of these patients.


Subject(s)
Placenta , Pre-Eclampsia , Pregnancy , Female , Humans , Placenta/metabolism , Transcription Factors/metabolism , Autophagy/genetics , Pre-Eclampsia/metabolism , Case-Control Studies
12.
J Pers Med ; 14(1)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38248788

ABSTRACT

It is estimated that approximately one in three women develop chronic venous disease (CVD) during pregnancy, a broad spectrum of morphofunctional disorders affecting the venous system in different regions of the body, including the lower limbs. A growing body of evidence supports the diverse maternofetal consequences derived from this condition, with the placenta being an organ particularly affected. Among other consequences, having CVD during pregnancy has been associated with systemic inflammation and altered cytokines and chemokine profiles in the maternal and fetal serum related to this condition. In the present work, we aimed to analyze if these inflammatory changes also occurred in the placental tissue of women with CVD, exploring by immunohistochemistry and real-time PCR (RT-qPCR) gene and protein expression of critical inflammatory markers like allograft inflammatory factor 1 (AIF-1), interleukin 10 (IL-10), IL-12A, and IL-18. Our results demonstrate an enhanced tissue expression of AIF-1, IL-12A, and IL-18, accompanied by a decrease in IL-10 in the placentas of women who had undergone CVD during pregnancy. Overall, our results suggest a possible pathophysiological role of inflammation in the placental tissue of women with CVD during pregnancy, although the precise consequences of this feature remain to be deeply analyzed.

13.
Medicina (Kaunas) ; 60(1)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38256428

ABSTRACT

Breast cancer is a prevalent malignancy in the present day, particularly affecting women as one of the most common forms of cancer. A significant portion of patients initially present with localized disease, for which curative treatments are pursued. Conversely, another substantial segment is diagnosed with metastatic disease, which has a worse prognosis. Recent years have witnessed a profound transformation in the prognosis for this latter group, primarily due to the discovery of various biomarkers and the emergence of targeted therapies. These biomarkers, encompassing serological, histological, and genetic indicators, have demonstrated their value across multiple aspects of breast cancer management. They play crucial roles in initial diagnosis, aiding in the detection of relapses during follow-up, guiding the application of targeted treatments, and offering valuable insights for prognostic stratification, especially for highly aggressive tumor types. Molecular markers have now become the keystone of metastatic breast cancer diagnosis, given the diverse array of chemotherapy options and treatment modalities available. These markers signify a transformative shift in the arsenal of therapeutic options against breast cancer. Their diagnostic precision enables the categorization of tumors with elevated risks of recurrence, increased aggressiveness, and heightened mortality. Furthermore, the existence of therapies tailored to target specific molecular anomalies triggers a cascade of changes in tumor behavior. Therefore, the primary objective of this article is to offer a comprehensive review of the clinical, diagnostic, prognostic, and therapeutic utility of the principal biomarkers currently in use, as well as of their clinical impact on metastatic breast cancer. In doing so, our goal is to contribute to a more profound comprehension of this complex disease and, ultimately, to enhance patient outcomes through more precise and effective treatment strategies.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnosis , Breast Neoplasms/therapy , Follow-Up Studies , Neoplasm Recurrence, Local/diagnosis , Biomarkers , Aggression
14.
Histol Histopathol ; 39(1): 35-40, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37057822

ABSTRACT

Pancreatic cancer is a malignant neoplasm that, despite its low frequency, has a 5-year survival rate of less than 10%. The study of different histopathological markers has allowed a better understanding of the onset and development of this type of tumor as well as facilitating an approach to clinical variables based on their diagnostic, prognostic, and predictive value. In this sense, the NLRP3 protein of the inflammasome has been shown to be a component of great relevance in the initiation and progression of pancreatic cancer, although the value of this biomarker in patients has not yet been clarified. In this study, we selected 41 patients with pancreatic cancer and followed them for 60 months (5 years), evaluating their NLRP3 expression using immunohistochemical techniques. Furthermore, by performing Kaplan-Meier curves, we evaluated the survival of these patients in relation to their NLRP3 expression. Our results show that a significant percentage of our cohort had high expression of this component (90.74%) and that there is an inverse relationship between the expression of NLRP3 and patient survival. High levels of NLRP3 expression are related to lower survival and worse prognosis in these patients, possibly due to an ineffective immune system response and increased tumor-promoted inflammation. Future studies should be aimed at confirming these results in larger groups and evaluating various clinical strategies based on this knowledge.


Subject(s)
Inflammasomes , Pancreatic Neoplasms , Humans , Biomarkers , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pancreatic Neoplasms/pathology , Prognosis
15.
Histol Histopathol ; 39(3): 279-292, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37747049

ABSTRACT

Odontology, as a scientific discipline, continuously collaborates with biomaterials engineering to enhance treatment characteristics and patients' satisfaction. Endodontics, a specialized field of dentistry, focuses on the study, diagnosis, prevention, and treatment of dental disorders affecting the dental pulp, root, and surrounding tissues. A critical aspect of endodontic treatment involves the careful selection of an appropriate endodontic sealer for clinical use, as it significantly influences treatment outcomes. Traditional sealers, such as zinc oxide-eugenol, fatty acid, salicylate, epoxy resin, silicone, and methacrylate resin systems, have been extensively used for decades. However, advancements in endodontics have given rise to bioceramic-based sealers, offering improved properties and addressing new challenges in endodontic therapy. In this review, a classification of these materials and their ideal properties are presented to provide evidence-based guidance to clinicians. Physicochemical properties, including sealing ability, stability over time and space, as well as biological properties such as biocompatibility and antibacterial characteristics, along with cost-effectiveness, are essential factors influencing clinicians' decisions based on individual patient evaluations.


Subject(s)
Biocompatible Materials , Root Canal Filling Materials , Humans , Root Canal Filling Materials/chemistry , Materials Testing , Epoxy Resins/chemistry , Zinc Oxide-Eugenol Cement
16.
Int J Mol Sci ; 24(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38139422

ABSTRACT

Spinal cord injury (SCI) is a serious medical condition associated with severe morbidities and disability. Chronic SCI patients present an enhanced susceptibility to infections and comorbidities with inflammatory pathogenesis. Chronic SCI appears to be associated with a systemic dysfunction of the immune system. We investigated the alteration of the pivotal CD4+ and CD8+ T lymphocytes in patients with chronic SCI at different years of evolution. A clinically homogenous population of 105 patients with chronic SCI (31 with time of evolution less than 5 years (SCI SP); 32 early chronic (SCI ECP) with time of evolution between 5 and 15 years; and 42 late chronic (SCI LCP) with time of evolution more than 15 years) and 38 healthy controls were enrolled. SCI ECP and SCI LCP patients showed significant CD4+ and CD8+ T lymphopenia, ascribed to a reduction in naïve and CM subsets. Furthermore, SCI ECP and SCI LCP patients showed a significant reduction in the expression of CD28 on CD8+ T lymphocytes. The expression of CCR6 by CD4+ T lymphocytes was decreased during the evolution of chronic SCI, but on CD8+ T lymphocytes, it was observed during the first 15 years of evolution. In conclusion, the chronic SCI course with severe damage to T lymphocytes mainly worsens over the years of disease evolution.


Subject(s)
CD8-Positive T-Lymphocytes , Spinal Cord Injuries , Humans , CD4-Positive T-Lymphocytes , Spinal Cord Injuries/metabolism , Lymphocyte Activation
17.
Int J Med Sci ; 20(13): 1744-1754, 2023.
Article in English | MEDLINE | ID: mdl-37928882

ABSTRACT

Chronic venous disease (CVD) is a complex and common vascular disorder characterized by increased blood pressure and morpho-functional changes in the venous system like varicose veins. Pregnancy is one of the main risk factors for suffering from this condition. Despite the consequences of CVD during pregnancy remains to be fully understood, compelling evidence support that this condition represents an important stress for the mother and the fetus, leading to significant histopathological changes in the placenta. Tetraspanins (CD9, CD63, and CD81), ALG-2-interacting protein X (Alix), and heat-shock protein (HSP-70) are cellular components involved in multiple biological processes under homeostatic and disease conditions. Despite some studies that have evidence of their relevance in the placenta tissue and pathological pregnancies, there is limited knowledge regarding their role in pregnancy-associated CVD. In this sense, the present work aims to analyze gene and protein expression of these components in the placenta of women with CVD (n=62) in comparison to healthy women (n=52) through RT-qPCR and immunohistochemistry, respectively. Our results show an increased gene and protein expression of the different studied markers, suggesting their potential involvement in the pathological environment of the placenta of women who undergo CVD during pregnancy. In this sense, further studies should be directed to deep into the potential implications of these changes to understand the effects and consequences of this condition in maternofetal wellbeing.


Subject(s)
Cardiovascular Diseases , Tetraspanins , Pregnancy , Humans , Female , Tetraspanins/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Placenta/metabolism , Heat-Shock Proteins/metabolism
18.
J Med Internet Res ; 25: e45660, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37962927

ABSTRACT

BACKGROUND: Paracetamol, codeine, and tramadol are commonly used to manage mild pain, and their availability without prescription or medical consultation raises concerns about potential opioid addiction. OBJECTIVE: This study aims to explore the perceptions and experiences of Twitter users concerning these drugs. METHODS: We analyzed the tweets in English or Spanish mentioning paracetamol, tramadol, or codeine posted between January 2019 and December 2020. Out of 152,056 tweets collected, 49,462 were excluded. The content was categorized using a codebook, distinguishing user types (patients, health care professionals, and institutions), and classifying medical content based on efficacy and adverse effects. Scientific accuracy and nonmedical content themes (commercial, economic, solidarity, and trivialization) were also assessed. A total of 1000 tweets for each drug were manually classified to train, test, and validate machine learning classifiers. RESULTS: Of classifiable tweets, 42,840 mentioned paracetamol and 42,131 mentioned weak opioids (tramadol or codeine). Patients accounted for 73.10% (60,771/83,129) of the tweets, while health care professionals and institutions received the highest like-tweet and tweet-retweet ratios. Medical content distribution significantly differed for each drug (P<.001). Nonmedical content dominated opioid tweets (23,871/32,307, 73.9%), while paracetamol tweets had a higher prevalence of medical content (33,943/50,822, 66.8%). Among medical content tweets, 80.8% (41,080/50,822) mentioned drug efficacy, with only 6.9% (3501/50,822) describing good or sufficient efficacy. Nonmedical content distribution also varied significantly among the different drugs (P<.001). CONCLUSIONS: Patients seeking relief from pain are highly interested in the effectiveness of drugs rather than potential side effects. Alarming trends include a significant number of tweets trivializing drug use and recreational purposes, along with a lack of awareness regarding side effects. Monitoring conversations related to analgesics on social media is essential due to common illegal web-based sales and purchases without prescriptions.


Subject(s)
Social Media , Tramadol , Humans , Acetaminophen/adverse effects , Acetaminophen/pharmacology , Codeine/adverse effects , Codeine/pharmacology , Machine Learning , Pain , Tramadol/adverse effects , Tramadol/pharmacology
19.
Gels ; 9(11)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37998975

ABSTRACT

Bone and cartilage tissue play multiple roles in the organism, including kinematic support, protection of organs, and hematopoiesis. Bone and, above all, cartilaginous tissues present an inherently limited capacity for self-regeneration. The increasing prevalence of disorders affecting these crucial tissues, such as bone fractures, bone metastases, osteoporosis, or osteoarthritis, underscores the urgent imperative to investigate therapeutic strategies capable of effectively addressing the challenges associated with their degeneration and damage. In this context, the emerging field of tissue engineering and regenerative medicine (TERM) has made important contributions through the development of advanced hydrogels. These crosslinked three-dimensional networks can retain substantial amounts of water, thus mimicking the natural extracellular matrix (ECM). Hydrogels exhibit exceptional biocompatibility, customizable mechanical properties, and the ability to encapsulate bioactive molecules and cells. In addition, they can be meticulously tailored to the specific needs of each patient, providing a promising alternative to conventional surgical procedures and reducing the risk of subsequent adverse reactions. However, some issues need to be addressed, such as lack of mechanical strength, inconsistent properties, and low-cell viability. This review describes the structure and regeneration of bone and cartilage tissue. Then, we present an overview of hydrogels, including their classification, synthesis, and biomedical applications. Following this, we review the most relevant and recent advanced hydrogels in TERM for bone and cartilage tissue regeneration.

20.
Antioxidants (Basel) ; 12(11)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-38001771

ABSTRACT

Oxidative stress is a major cellular event that occurs in the placenta, fulfilling critical physiological roles in non-pathological pregnancies. However, exacerbated oxidative stress is a pivotal feature of different obstetric complications, like pre-eclampsia, fetal growth restriction, and other diseases. Compelling evidence supports the relevant role of diet during pregnancy, with pleiotropic consequences for maternal well-being. The present review aims to examine the complex background between oxidative stress and placental development and function in physiological conditions, also intending to understand the relationship between different dietary patterns and the human placenta, particularly how this could influence oxidative stress processes. The effects of Westernized diets (WDs) and high-fat diets (HFDs) rich in ultra-processed foods and different additives are compared with healthy patterns such as a Mediterranean diet (MedDiet) abundant in omega 3 polyunsaturated fatty acids, monounsaturated fatty acids, polyphenols, dietary fiber, and vitamins. Although multiple studies have focused on the role of specific nutrients, mostly in animal models and in vitro, further observational and intervention studies focusing on the placental structure and function in women with different dietary patterns should be conducted to understand the precise influence of diet on this organ.

SELECTION OF CITATIONS
SEARCH DETAIL
...