Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Microb Drug Resist ; 27(8): 1144-1154, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33539269

ABSTRACT

Antimicrobial resistance (AMR) developed by Salmonella within animals used for food products is a major global issue. Monitoring AMR in animals destined for slaughter is, therefore, critical. Abattoirs may serve as potential candidate checkpoints for monitoring resistance patterns on farms. A complicating factor, however, is the impact of lairage on Salmonella detected in pigs at slaughter. This study sought to compare AMR patterns in Salmonella spp. in swine collected upon arrival (fecal samples) at the abattoir with those at postslaughter (cecal samples) and evaluate the feasibility of using slaughterhouse samples for surveillance of prevailing AMR Salmonella on farms. Eighty-four Salmonella isolates were recovered from a large, midwestern U.S. abattoir between September and November 2013. Isolates were tested for phenotypic AMR to 12 antimicrobials using the broth microdilution assay. Whole-genome sequencing identified the AMR genes harbored by the strains. Significant differences were observed in the isolate phenotypes and genotypes; however, no significant difference was observed in genotypic resistance patterns. Hence, the AMR profiles of Salmonella spp. postslaughter cannot be predicted from preslaughter samples. Further research considering the genetic diversity of isolates and statistical power of the genotypic analysis is warranted to improve the performance of WGS-inferred antimicrobial susceptibility.


Subject(s)
Abattoirs , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/physiology , Salmonella/drug effects , Animals , Drug Resistance, Bacterial/genetics , Genes, Bacterial , Microbial Sensitivity Tests , Red Meat/microbiology , Salmonella/genetics , Salmonella Infections, Animal/microbiology , Swine , Swine Diseases/microbiology , Whole Genome Sequencing
2.
Foodborne Pathog Dis ; 16(2): 94-103, 2019 02.
Article in English | MEDLINE | ID: mdl-30688527

ABSTRACT

Hemolytic Escherichia coli are important pathogens in neonatal and weaned pigs. In this study, we analyzed 95 hemolytic E. coli isolated from intestinal contents or fecal samples of diarrheic piglets in 15 states of the United States between November 2013 and December 2014. Phenotypic antimicrobial susceptibility was determined through Sensititre BOFO6F plates for all the strains. They were all resistant to clindamycin, penicillin, tiamulin, tilmicosin, and highly resistant to oxytetracycline (91.6%), chlortetracycline (78.9%), ampicillin (75.8%), and sulfadimethoxine (68.4%). 86.2% of them were multidrug resistant. Whole genome sequencing (WGS) showed that 55 strains were enterotoxigenic E. coli (ETEC) and 40 strains were non-ETEC, and the strains belonged to 22 known and 2 novel sequence types (STs). ST100 and ST10 were the main and predominant STs in ETEC strains, whereas the non-ETEC strains were diverse with ST23 and ST761 as the main STs. Antibiotic resistance gene/mutation profiling of the genomes confirmed the results of antimicrobial susceptibility test. Notably, significant differences were found in the susceptibility to enrofloxacin between ETEC and non-ETEC (58.2% vs. 5.0%) and gentamicin (32.7% vs. 7.5%). ampH, ampC2, and ampC1 were the most common beta-lactamase genes in all E. coli strains, and extended-spectrum beta-lactamase (ESBL) genes were rare in these isolates. This study provides new insights into antibiotic resistance and genotypes of intestinal pathogenic E. coli associated with swine disease in the United States, and support the utility of WGS in accurate prediction of resistance to most antibiotics.


Subject(s)
Anti-Infective Agents/pharmacology , Diarrhea/veterinary , Enteropathogenic Escherichia coli , Escherichia coli Infections/veterinary , Swine Diseases/microbiology , Animals , Animals, Newborn , Diarrhea/microbiology , Drug Resistance, Multiple , Enteropathogenic Escherichia coli/classification , Enteropathogenic Escherichia coli/drug effects , Enteropathogenic Escherichia coli/genetics , Enteropathogenic Escherichia coli/pathogenicity , Escherichia coli Infections/microbiology , Genome, Bacterial/genetics , Genotype , Hemolysis , Microbial Sensitivity Tests/veterinary , Multilocus Sequence Typing/veterinary , Phenotype , Swine , Weaning
3.
Data Brief ; 22: 227-233, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30581932

ABSTRACT

Burial of infectious and potentially infectious livestock and poultry animals is the most common response to an emergency situation. The data set summarizes 22-week-long experiment that simulates the environment found within conventional burial trenches for emergency disposal of animal carcasses, worldwide, sometimes with a topical application of quicklime as it is required in the Republic of Korea. This data set shows the rarely presented evidence of the extremely slow decay of animal carcasses. Besides visual evidence of no visible breakdown of carcass material, i.e., carcass (or carcass quarters and coarse cuts) still resembled the initial material at the end of the study, we present data characterizing the process. Specifically, temporal variations of digestate quality (pH, ammonia, volatile fatty acids), biogas production, and the persistence of odorous volatile organic compounds are summarized. The data provide important evidence of undesirable, slow progression of the digestion process. The evidence of failure to achieve practical endpoints with the anaerobic digestion provides the impetus for seeking alternative, improved methods of disposal that will be feasible in emergency context, such as aerated burial concept (Koziel et al., 2018 [1]).

4.
Front Microbiol ; 9: 2078, 2018.
Article in English | MEDLINE | ID: mdl-30271385

ABSTRACT

Livestock associated methicillin resistant S. aureus (LA-MRSA) are lineages adapted to livestock species. LA-MRSA can be transmitted to humans and public health concerns exist because livestock may be the largest MRSA reservoir outside of hospital settings. Although the predominant European (ST398) and Asian (ST9) lineages of LA-MRSA are considered livestock adapted, North American swine also harbor ST5, a globally disseminated and highly pathogenic lineage. This study applied whole genome sequencing and single nucleotide polymorphism (SNP) typing to compare the population structure and genetic relatedness between swine associated and human clinical MRSA ST5 isolates. The established high-resolution phylogenomic framework revealed that LA-MRSA and human clinical MRSA ST5 are genetically distinct. LA-MRSA isolates were found to be clonal within farms, while greater genome diversity was observed among sampled clinical MRSA ST5. Analysis of the accessory genome demonstrated that LA-MRSA ST5 isolates and clinical MRSA ST5 isolates harbor different AMR genes and virulence factors, consistent with the SNP analysis. Collectively, our data indicate LA-MRSA and clinical MRSA ST5 isolates are distinct and the swine reservoir is likely of minimal significance as a source of clinical MRSA ST5 infections.

5.
Front Microbiol ; 9: 2102, 2018.
Article in English | MEDLINE | ID: mdl-30258418

ABSTRACT

Antimicrobial resistance (AMR) is an expanding public health concern and methicillin resistant Staphylococcus aureus (MRSA) is a notable example. Since the discovery of livestock associated MRSA (LA-MRSA), public health concerns have arisen surrounding the potential of LA-MRSA isolates to serve as a reservoir for AMR determinants. In this study, we compare swine associated LA-MRSA ST5 and human clinical MRSA ST5 isolates for phenotypic antimicrobial susceptibilities determined via broth microdilution and genotypic determinants of AMR using whole genome sequencing and comparative genomic analysis to identify AMR elements. Swine associated LA-MRSA ST5 isolates exhibited phenotypic resistance to fewer antibiotics than clinical MRSA ST5 isolates from humans with no swine contact. Distinct genomic AMR elements were harbored by each subgroup, with little overlap in shared AMR genes between swine associated LA-MRSA ST5 and clinical MRSA ST5 isolates. Our results demonstrate that phenotypic antimicrobial susceptibilities and genotypic determinants of AMR among swine associated LA-MRSA ST5 and clinical MRSA ST5 isolates are separate and distinct.

6.
Waste Manag ; 76: 715-726, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29548829

ABSTRACT

Nearly 55,000 outbreaks of animal disease were reported to the World Animal Health Information Database between 2005 and 2016. To suppress the spread of disease, large numbers of animal mortalities often must be disposed of quickly and are frequently buried on the farm where they were raised. While this method of emergency disposal is fast and relatively inexpensive, it also can have undesirable and lasting impacts (slow decay, concerns about groundwater contamination, pathogens re-emergence, and odor). Following the 2010 foot-and-mouth disease outbreak, the Republic of Korea's National Institute of Animal Science funded research on selected burial alternatives or modifications believed to have potential to reduce undesirable impacts of burial. One such modification involves the injection of air into the liquid degradation products from the 60-70% water from decomposing carcasses in lined burial trenches. Prior to prototype development in the field, a laboratory-scale study of aerated decomposition (AeD) of poultry carcasses was conducted to quantify improvements in time of carcass decomposition, reduction of potential groundwater pollutants in the liquid products of decomposition (since trench liners may ultimately leak), and reduction of odorous VOCs emitted during decomposition. Headspace gases also were monitored to determine the potential for using gaseous biomarkers in the aerated burial trench exhaust stream to monitor completion of the decomposition. Results of the lab-scale experiments show that the mass of chicken carcasses was reduced by 95.0 ±â€¯0.9% within 3 months at mesophilic temperatures (vs. negligible reduction via mesophilic anaerobic digestion typical of trench burial) with concomitant reduction of biochemical oxygen demand (BOD; 99%), volatile suspended solids (VSS; 99%), total suspended solids (TSS; 99%), and total ammonia nitrogen (TAN; 98%) in the liquid digestate. At week #7 BOD and TSS in digestate met the U.S. EPA standards for treated wastewater discharge to surface water. Salmonella and Staphylococcus were inactivated by the AeD process after week #1 and #3, respectively. Five gaseous biomarkers: pyrimidine; p-cresol; phenol; dimethyl disulfide; and dimethyl trisulfide; were identified and correlated with digestate quality. Phenol was the best predictor of TAN (R = 0.96), BOD (R = 0.92), and dissolved oxygen (DO) (R = -0.91). Phenol was also the best predictor populations of Salmonella (R = 0.95) and aerobes (R = 0.88). P-cresol was the best predictor for anaerobes (R = 0.88). The off-gas from AeD will require biofiltration or other odor control measures for a much shorter time than anaerobic decomposition. The lab-scale studies indicate that AeD burial has the potential to make burial a faster, safer, and more environmentally friendly method for emergency disposal and treatment of infectious animal carcasses and that this method should be further developed via prototype-scale field studies.


Subject(s)
Burial , Disease Outbreaks , Groundwater/microbiology , Refuse Disposal , Animals , Emergencies , Foot-and-Mouth Disease , Poultry , Republic of Korea , Time Factors , Zoonoses
7.
J Vet Diagn Invest ; 30(1): 42-55, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28906178

ABSTRACT

The gel diffusion precipitin test (GDPT) and restriction endonuclease analysis (REA) have commonly been used in the serotyping and genotyping of Pasteurella multocida. Whole genome sequencing (WGS) and single nucleotide polymorphism (SNP) analysis has become the gold standard for other organisms, offering higher resolution than previously available methods. We compared WGS to REA and GDPT on 163 isolates of P. multocida to determine if WGS produced more precise results. The isolates used represented the 16 reference serovars, isolates with REA profiles matching an attenuated fowl cholera vaccine strain, and isolates from 10 different animal species. Isolates originated from across the United States and from Chile. Identical REA profiles clustered together in the phylogenetic tree. REA profiles that differed by only a few bands had fewer SNP differences than REA profiles with more differences, as expected. The GDPT results were diverse but it was common to see a single serovar show up repeatedly within clusters. Several errors were found when examining the REA profiles. WGS was able to confirm these errors and compensate for the subjectivity in analysis of REA. Also, results of WGS and SNP analysis correlated more closely with the epidemiologic data than GDPT. In silico results were also compared to a lipopolysaccharide rapid multiplex PCR test. From the data produced in our study, WGS and SNP analysis was superior to REA and GDPT and highlighted some of the issues with the older tests.


Subject(s)
Pasteurella multocida/isolation & purification , Restriction Mapping/veterinary , Serotyping/veterinary , Whole Genome Sequencing/veterinary , Animals , Bacterial Proteins/analysis , DNA Restriction Enzymes/analysis , DNA, Bacterial/analysis , Immunodiffusion/methods , Immunodiffusion/veterinary , Pasteurella Infections/veterinary , Phylogeny , Precipitins/chemistry , Restriction Mapping/methods , Serotyping/methods , Whole Genome Sequencing/methods
8.
Appl Environ Microbiol ; 84(2)2018 01 15.
Article in English | MEDLINE | ID: mdl-29101193

ABSTRACT

Staphylococcus aureus is part of the nasal microbiome of many humans and has become a significant public health burden due to infections with antibiotic-resistant strains, including methicillin-resistant S. aureus (MRSA) strains. Several lineages of S. aureus, including MRSA, are found in livestock species and can be acquired by humans through contact with animals. These livestock-associated MRSA (LA-MRSA) isolates raise public health concerns because of the potential for livestock to act as reservoirs for MRSA outside the hospital setting. In the United States, swine harbor a mixed population of LA-MRSA isolates, with the sequence type 398 (ST398), ST9, and ST5 lineages being detected. LA-MRSA ST5 isolates are particularly concerning to the public health community because, unlike the isolates in the ST398 and ST9 lineages, isolates in the ST5 lineage are a significant cause of human disease in both the hospital and community settings globally. The ability of swine-associated LA-MRSA ST5 isolates to adhere to human keratinocytes in vitro was investigated, and the adherence genes harbored by these isolates were evaluated and compared to those in clinical MRSA ST5 isolates from humans with no swine contact. The two subsets of isolates adhered equivalently to human keratinocytes in vitro and contained an indistinguishable complement of adherence genes that possessed a high degree of sequence identity. Collectively, our data indicate that, unlike LA-MRSA ST398 isolates, LA-MRSA ST5 isolates do not exhibit a reduced genotypic or phenotypic capacity to adhere to human keratinocytes.IMPORTANCE Our data indicate that swine-associated livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) ST5 isolates are as capable of adhering to human skin and have the same genetic potential to adhere as clinical MRSA ST5 isolates from humans. This suggests that humans in contact with livestock have the potential to become colonized with LA-MRSA ST5 isolates; however, the genes that contribute to the persistence of S. aureus on human skin were absent in LA-MRSA ST5 isolates. The data presented here are important evidence in evaluating the potential risks that LA-MRSA ST5 isolates pose to humans who come into contact with livestock.


Subject(s)
Adhesins, Bacterial/genetics , Bacterial Adhesion/physiology , Keratinocytes/microbiology , Methicillin-Resistant Staphylococcus aureus/physiology , Staphylococcal Infections/veterinary , Animals , Bacterial Adhesion/genetics , Genes, Bacterial , Genotype , Humans , Livestock/microbiology , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Microbial Sensitivity Tests , Staphylococcal Infections/microbiology , Staphylococcal Infections/transmission , Swine/microbiology , Swine Diseases/epidemiology
9.
Genome Announc ; 5(44)2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29097451

ABSTRACT

Methicillin-resistant Staphylococcus aureus colonizes humans and other animals such as swine. Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) sequence type 5 (ST5) isolates are a public concern due to their pathogenicity and ability to acquire mobile genetic elements. This report presents draft genome sequences for 63 LA-MRSA ST5 isolates in the United States.

10.
Genome Announc ; 5(44)2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29097452

ABSTRACT

Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) is a bacterium carried by or obtained from swine and other livestock. The initial and predominant swine-associated LA-MRSA sequence type (ST) identified is ST398. Here, we present 14 draft genome sequences from LA-MRSA ST398 isolates found in the United States.

SELECTION OF CITATIONS
SEARCH DETAIL