Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 466: 133652, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38309158

ABSTRACT

This study investigates the ecotoxicological effects of BDE-209, a persistent organic pollutant (POP) prevalent in Kuwait's coastal-industrial areas, on benthic foraminiferal communities. We conducted a mesocosm experiment in which we exposed benthic foraminiferal communities sampled from the coastal-industrial areas of Kuwait to a gradient of BDE-209 concentrations (0.01 to 20 mg/kg). The impact of exposure was assessed using live-staining and metabarcoding techniques. Despite the significantly different taxonomic compositions detected by the two techniques, our results show that BDE-209 significantly affects foraminiferal communities, with moderately high concentrations leading to reduced α-diversity and considerable taxonomic shifts in both molecular and morphological assemblages. At concentrations of 10 and 20 mg/kg, no living foraminifera were detected after 8 weeks, suggesting a threshold for their survival under BDE-209 exposure. The parallel responses of molecular and morphological communities confirm the reliability of both assessment methods. This study is the first to investigate the reaction of eukaryotic communities, specifically foraminifera, to POPs such as BDE-209, generating valuable insights that have the potential to enhance field studies and aid the refinement of sediment quality guidelines.


Subject(s)
Foraminifera , Geologic Sediments , Halogenated Diphenyl Ethers , Foraminifera/genetics , Biodiversity , Reproducibility of Results , Environmental Monitoring/methods
2.
Mar Environ Res ; 195: 106340, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38232436

ABSTRACT

In recent years, the region surrounding Sepetiba Bay (SB; SE Brazil) has become a hub of intense urban expansion and economic exploitation in response to ore transport and industrial and port activities. As a result, contaminants have been introduced into the bay, leading to an overall worsening of the environmental quality. The present work applies for the first time a foraminiferal morphology-based approach (M) and eDNA-based metabarcoding sequencing (G), along with geochemical data to assess the ecological quality status (EcoQS) in the SB. Principal component analysis shows that the eDNA and morphospecies diversity as well as most of the taxa relative abundance decline in response to the environmental stress (ES) gradient related to total organic carbon (TOC) and metal pollution. Based on ecological indices, Exp(H'bc) (G), Exp(H'bc) (M), foraminifera ATZI marine biotic index (Foram-AMBI), Foram Stress Index (FSI), and geochemical indices (TOC and Potential Ecological Risk Index), the lowest values of EcoQS (i.e., bad to moderate) are inferred in the innermost part of the SB. Despite minor discrepancies among the six EcoQS indices, an agreement has been found for 63% of the stations. To improve the agreement between the ecological indices, it is necessary to fill the gap in species ecology; information on the ecology of many species is still unknown. This work reinforces the importance of molecular analysis and morphological methods in environmental impact studies and confirms the reliability of foraminiferal metabarcoding in EcoQS assessment. This is the first study evaluating the EcoQS in the South Atlantic by using combined foraminiferal eDNA metabarcoding with morphological data.


Subject(s)
Foraminifera , Foraminifera/genetics , Environmental Monitoring/methods , Brazil , Bays , Reproducibility of Results , Biodiversity , Geologic Sediments/chemistry
3.
Environ Int ; 172: 107738, 2023 02.
Article in English | MEDLINE | ID: mdl-36641836

ABSTRACT

The Anthropocene is characterized by dramatic ecosystem changes driven by human activities. The impact of these activities can be assessed by different geochemical and paleontological proxies. However, each of these proxies provides only a fragmentary insight into the effects of anthropogenic impacts. It is highly challenging to reconstruct, with a holistic view, the state of the ecosystems from the preindustrial period to the present day, covering all biological components, from prokaryotes to multicellular eukaryotes. Here, we used sedimentary ancient DNA (sedaDNA) archives encompassing all trophic levels of biodiversity to reconstruct the two century-natural history in Bagnoli-Coroglio (Gulf of Pozzuoli, Tyrrhenian Sea), one of the most polluted marine-coastal sites in Europe. The site was characterized by seagrass meadows and high eukaryotic diversity until the beginning of the 20th century. Then, the ecosystem completely changed, with seagrasses and associated fauna as well as diverse groups of planktonic and benthic protists being replaced by low diversity biota dominated by dinophyceans and infaunal metazoan species. The sedaDNA analysis revealed a five-phase evolution of the area, where changes appear as the result of a multi-level cascade effect of impacts associated with industrial activities, urbanization, water circulation and land-use changes. The sedaDNA allowed to infer reference conditions that must be considered when restoration actions are to be implemented.


Subject(s)
Biodiversity , Ecosystem , Humans , Animals , Biota , Europe , Human Activities , Geologic Sediments
4.
Environ Pollut ; 320: 121003, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36623785

ABSTRACT

Using benthic foraminifera, we evaluate the ecological quality status (EcoQS) of transitional waters of the Guanabara Bay (SE Brazil) by applying the diversity-based index exp (H'bc) and the sensitivity-based Foram-AMBI for the first time in South America. The Guanabara Bay was selected for this study as it is one of the largest transitional ecosystems in the State of Rio de Janeiro and has been severely impacted by anthropogenic activities. Concentrations of potentially toxic elements (PTEs) were assessed by sequential chemical extraction in three phases (i.e., dissolved in water, adsorbed on organic matter, and Mn oxy-hydroxides). Total organic carbon, total nitrogen, and stable isotope (δ13C and δ15N) signatures of organic matter were analyzed to trace environmental stress. The Ammonia/Elphidium ratio suggests hypoxic conditions at most of the sampled sites. Principal component analysis identifies the first component as environmental stress underlying organic matter and PTE enrichment (in all three phases), which is positively related to Foram-AMBI and negatively to exp (H'bc). The exp (H'bc) and Foram-AMBI indices reveal that stations near the Governador Island and Niterói margin have the worst EcoQS, showing medium to extreme pollution. Additionally, Foram-AMBI and exp (H'bc) provide a congruent EcoQS classification for ∼64% of the sites. Although these results are promising, they suggest that a significant effort should be made to obtain better knowledge of foraminiferal ecological requirements to employ benthic foraminifera as a biomonitoring and management method.


Subject(s)
Foraminifera , Water Pollutants, Chemical , Geologic Sediments/analysis , Ecosystem , Bays , Brazil , Environmental Monitoring/methods , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
5.
Sci Total Environ ; 833: 155093, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35421459

ABSTRACT

The rapid urbanization and industrialization of Kuwait and the consequent effluent discharges into marine environments have resulted in a degradation of water and sediment quality in the coastal marine ecosystems such as in the Kuwait Bay. This study investigates the ecological response of benthic foraminifera (protists) to environmental stress in the Kuwait Bay. The traditional morphological approach was compared to the innovative environmental DNA (eDNA) metabarcoding to evaluate the ecological quality status (EcoQS). Forty-six surface sediment samples were collected from selected stations in the Kuwait Bay. To detect the pollution gradient, environmental parameters from water (e.g., salinity, pH, dissolved oxygen) and sediment (e.g., grain-size, trace metals, total organic carbon, total petroleum hydrocarbons) were measured at each station. Although the foraminiferal assemblages were different in the morphological and molecular datasets, the species turnover was congruent and statistically significant. Diversity-based biotic indices derived from both morphological and metabarcoding approaches, reflect the environmental stress gradient (i.e., organic and metal contaminations) in the Kuwait Bay. The lowest values of EcoQS (i.e., bad to poor) are found in the innermost part (i.e., Sulaibikhat Bay and Ras Kazmah), while higher EcoQS values occur in the outer part of the bay. This study constitutes the first attempt to apply the foraminiferal metabarcoding to assess the EcoQS within the Arabian Gulf and presents its advantages compared to the conventional morphological approach.


Subject(s)
Foraminifera , Bays , Ecosystem , Environmental Monitoring/methods , Geologic Sediments/chemistry , Kuwait , Water
6.
Mar Environ Res ; 172: 105502, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34638002

ABSTRACT

The main environmental variables controlling benthic foraminiferal distributions were identified and used to assess their influence on ecological indices developed as predictors of Ecological Quality Status (EcoQS) in marine ecosystems. Gradient forest and random forest models were applied to assess the predictive value of a selection of abiotic (environmental) and biotic (foraminifera) variables in a costal marine area in the central Adriatic Sea (Italy). This approach yields evidence that the predictor variables sand, silt, Pollution Load Index, and TN have the greatest influence on the distribution of benthic foraminifera in this area. In addition, we identify thresholds for the most important environmental variables that influence ecological indices. These findings contribute to efforts to determine how to best improve sediment quality and environmental stability for marine conservation. Further application of these approaches represents a useful tool for policymakers to survey the diversity of marine organisms and to improve the ability to protect and restore marine ecosystems by identifying predictors of diversity and identifying key thresholds in these predictors.


Subject(s)
Foraminifera , Biodiversity , Ecosystem , Environmental Monitoring , Geologic Sediments , Italy
7.
Data Brief ; 35: 106920, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33748362

ABSTRACT

We gathered total organic carbon (%) and relative abundances of benthic foraminifera in intertidal areas and transitional waters from the English Channel/European Atlantic Coast (587 samples) and the Mediterranean Sea (301 samples) regions from published and unpublished datasets. This database allowed to calculate total organic carbon optimum and tolerance range of benthic foraminifera in order to assign them to ecological groups of sensitivity. Optima and tolerance range were obtained by mean of the weighted-averaging method. The data are related to the research article titled "Indicative value of benthic foraminifera for biomonitoring: assignment to ecological groups of sensitivity to total organic carbon of species from European intertidal areas and transitional waters" [1].

8.
Mar Pollut Bull ; 164: 112071, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33549924

ABSTRACT

This work contributes to the ongoing work aiming at confirming benthic foraminifera as a biological quality element. In this study, benthic foraminifera from intertidal and transitional waters from the English Channel/European Atlantic coast and the Mediterranean Sea were assigned to five ecological groups using the weighted-averaging optimum with respect to TOC of each species. It was however not possible to assign typical salt marsh species due to the presence of labile and refractory organic matter that hampers TOC characterization. Tests of this study species' lists with Foram-AMBI on two independent datasets showed a significant correlation between Foram-AMBI and TOC, confirming the strong relation between foraminifera and TOC. For one of the validation datasets, associated macrofaunal data were available and a significant correlation was found between the foraminiferal Foram-AMBI and the macrofaunal AMBI. The here proposed lists should be further tested with sensitivity-based indices in different European regional settings.


Subject(s)
Foraminifera , Biological Monitoring , Carbon , Environmental Monitoring , Geologic Sediments , Mediterranean Sea
SELECTION OF CITATIONS
SEARCH DETAIL
...