Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 16(8): 2482-92, 2015 Aug 10.
Article in English | MEDLINE | ID: mdl-26181636

ABSTRACT

Toward our goal of scalable, antimicrobial materials based on photodynamic inactivation, paper sheets comprised of photosensitizer-conjugated cellulose fibers were prepared using porphyrin and BODIPY photosensitizers, and characterized by spectroscopic (infrared, UV-vis diffuse reflectance, inductively coupled plasma optical emission) and physical (gel permeation chromatography, elemental, and thermal gravimetric analyses) methods. Antibacterial efficacy was evaluated against Staphylococcus aureus (ATCC-2913), vancomycin-resistant Enterococcus faecium (ATCC-2320), Acinetobacter baumannii (ATCC-19606), Pseudomonas aeruginosa (ATCC-9027), and Klebsiella pneumoniae (ATCC-2146). Our best results were achieved with a cationic porphyrin-paper conjugate, Por((+))-paper, with inactivation upon illumination (30 min, 65 ± 5 mW/cm(2), 400-700 nm) of all bacterial strains studied by 99.99+% (4 log units), regardless of taxonomic classification. Por((+))-paper also inactivated dengue-1 virus (>99.995%), influenza A (∼ 99.5%), and human adenovirus-5 (∼ 99%). These results demonstrate the potential of cellulose materials to serve as scalable scaffolds for anti-infective or self-sterilizing materials against both bacteria and viruses when employing a photodynamic inactivation mode of action.


Subject(s)
Anti-Infective Agents/chemistry , Cellulose/chemistry , Microbial Sensitivity Tests , Photosensitizing Agents/chemistry , Anti-Infective Agents/administration & dosage , Anti-Infective Agents/chemical synthesis , Cellulose/administration & dosage , Cellulose/chemical synthesis , Enterococcus faecium/drug effects , Humans , Klebsiella pneumoniae/drug effects , Light , Paper , Photosensitizing Agents/chemical synthesis , Porphyrins/administration & dosage , Porphyrins/chemical synthesis , Porphyrins/chemistry , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects
2.
Inorg Chem ; 53(9): 4527-34, 2014 May 05.
Article in English | MEDLINE | ID: mdl-24725061

ABSTRACT

We report four photocatalytically active cobaloxime complexes for light-driven hydrogen evolution. The cobaloxime catalysts are sensitized by different meso-pyridyl boron dipyrromethene (BODIPY) chromophores, bearing either two bromo- or iodo-substituents on the BODIPY core. The pyridine linker between the BODIPY and cobaloxime is further modified by a methyl substituent on the pyridine, influencing the stability and electronic properties of the cobaloxime catalyst and thus the photocatalytic efficiency of each system. Four cobaloxime catalyst complexes and three novel BODIPY chromophores are synthesized and characterized by absorption, fluorescence, infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and electrochemistry. Crystal structures for the BODIPY-cobaloxime complexes 2 and 3 are presented. In contrast to the photocatalytically inactive, nonhalogenated reference complex 1, the four newly reported molecules are active for photocatalytic hydrogen evolution, with a maximum turnover number (TON) of 30.9 mol equiv of H2 per catalyst for the meso-methylpyridyl 2,6-diiodo BODIPY-sensitized cobaloxime complex 5. We conclude that accessing the photoexcited triplet state of the BODIPY chromophore by introducing heavy atoms (i.e., bromine or iodine) is necessary for efficient electron transfer in this system, enabling catalytic hydrogen generation. In addition, relatively electron-donating pyridyl linkers improve the stability of the complex, increasing the overall TON for hydrogen production.

SELECTION OF CITATIONS
SEARCH DETAIL