Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Neurosci ; 52(12): 4779-4790, 2020 12.
Article in English | MEDLINE | ID: mdl-32692429

ABSTRACT

Acute cycling exercise can modulate motor cortical circuitry in the non-exercised upper-limb. Within the primary motor cortex, measures of intracortical inhibition are reduced and intracortical facilitation is enhanced following acute exercise. Further, acute cycling exercise decreases interhemispheric inhibition between the motor cortices and lowers cerebellar-to-motor cortex inhibition. Yet, investigations into the effects of acute exercise on sensorimotor integration, referring to the transfer of incoming afferent information from the primary somatosensory cortex to motor cortex, are lacking. The current work addresses this gap in knowledge with two experimental sessions. In the first session, we tested the exercise-induced changes in somatosensory and motor excitability by assessing somatosensory (SEP) and motor evoked potentials (MEPs). In the second session, we explored the effects of acute cycling exercise on short- (SAI) and long-latency afferent inhibition (LAI), and afferent facilitation. In both experimental sessions, neurophysiological measures were obtained from the non-exercised upper-limb muscle, tested at two time points pre-exercise separated by a 25-min period of rest. Next, a 25-min bout of moderate-intensity lower-limb cycling was performed with measures assessed at two time points post-exercise. Acute lower-limb cycling increased LAI, without modulation of SAI or afferent facilitation. Further, there were no exercise-induced changes to SEP or MEP amplitudes. Together, these results suggest that acute exercise has unique effects on sensorimotor integration, which are not accompanied by concurrent changes in somatosensory or motor cortical excitability.


Subject(s)
Motor Cortex , Transcranial Magnetic Stimulation , Evoked Potentials, Motor , Exercise , Neural Inhibition
2.
Brain Res ; 1707: 45-53, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30468723

ABSTRACT

The ability to actively suppress, or gate, irrelevant sensory information is needed for safe and efficient walking in sensory-rich environments. Both attention and the late phase of motor preparation alter somatosensory evoked potentials (SEPs) in healthy adults. The aim of this study was to examine the effect of attention on the processing of irrelevant somatosensory information during the early phase of preparation of plantarflexion movements. Young healthy individuals received tibial nerve stimulation while electroencephalography (EEG) recorded SEPs over the Cz electrode. Three conditions were tested in both legs: 1) Rest, 2) Attend To the stimulated limb, and 3) Attend Away from the stimulated limb. In conditions 2 and 3, vibration (80 Hz) was applied over the medial soleus muscle to cue voluntary plantarflexion movements of the stimulated (Attend To) or non-stimulated leg (Attend Away). Only SEPs delivered during early preparation were averaged for statistical analysis. Results demonstrated a main effect of condition for the N40 and N70 indicating that SEP amplitudes in the Attend To condition were smaller than rest (p ≤ 0.02). For the P50, no interaction effects or main effects were found (p ≥ 0.08). There was no main effect of leg for any component measured. The results indicate that gating of irrelevant sensory information during early preparation occurs in the leg when attention is directed within the same limb. If attention alters the somatosensory stimuli from a leg movement, then directing attention may affect safe community walking.


Subject(s)
Perception/physiology , Sensation/physiology , Somatosensory Cortex/physiology , Adult , Attention/physiology , Electric Stimulation , Electroencephalography , Evoked Potentials, Somatosensory/physiology , Female , Healthy Volunteers , Humans , Leg/physiology , Male , Median Nerve , Movement/physiology , Tibial Nerve
3.
Neurorehabil Neural Repair ; 32(8): 671-681, 2018 08.
Article in English | MEDLINE | ID: mdl-29969936

ABSTRACT

BACKGROUND: In the chronic phase after stroke, cortical excitability differs between the cerebral hemispheres; the magnitude of this asymmetry depends on degree of motor impairment. It is unclear whether these asymmetries also affect capacity for plasticity in corticospinal tract excitability or whether hemispheric differences in plasticity are related to chronic sensorimotor impairment. METHODS: Response to paired associative stimulation (PAS) was assessed bilaterally in 22 individuals with chronic hemiparesis. Corticospinal excitability was measured as the area under the motor-evoked potential (MEP) recruitment curve (AUC) at baseline, 5 minutes, and 30 minutes post-PAS. Percentage change in contralesional AUC was calculated and correlated with paretic motor and somatosensory impairment scores. RESULTS: PAS induced a significant increase in AUC in the contralesional hemisphere ( P = .041); in the ipsilesional hemisphere, there was no significant effect of PAS ( P = .073). Contralesional AUC showed significantly greater change in individuals without an ipsilesional MEP ( P = .029). Percentage change in contralesional AUC between baseline and 5 m post-PAS correlated significantly with FM score ( r = -0.443; P = .039) and monofilament thresholds ( r = 0.444, P = .044). DISCUSSION: There are differential responses to PAS within each cerebral hemisphere. Contralesional plasticity was increased in individuals with more severe hemiparesis, indicated by both the absence of an ipsilesional MEP and a greater degree of motor and somatosensory impairment. These data support a body of research showing compensatory changes in the contralesional hemisphere after stroke; new therapies for individuals with chronic stroke could exploit contralesional plasticity to help restore function.


Subject(s)
Evoked Potentials, Motor/physiology , Motor Cortex/physiopathology , Neuronal Plasticity/physiology , Paresis/physiopathology , Stroke/physiopathology , Aged , Aged, 80 and over , Electromyography , Female , Functional Laterality/physiology , Humans , Male , Middle Aged , Paresis/etiology , Stroke/complications , Transcranial Magnetic Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL
...