Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nat Hum Behav ; 8(2): 243-255, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38081999

ABSTRACT

The rules and structure of human culture impact health as much as genetics or environment. To study these relationships, we combine ancient DNA (n = 230), skeletal metrics (n = 391), palaeopathology (n = 606) and dietary stable isotopes (n = 873) to analyse stature variation in Early Neolithic Europeans from North Central, South Central, Balkan and Mediterranean regions. In North Central Europe, stable isotopes and linear enamel hypoplasias indicate high environmental stress across sexes, but female stature is low, despite polygenic scores identical to males, and suggests that cultural factors preferentially supported male recovery from stress. In Mediterranean populations, sexual dimorphism is reduced, indicating male vulnerability to stress and no strong cultural preference for males. Our analysis indicates that biological effects of sex-specific inequities can be linked to cultural influences at least as early as 7,000 yr ago, and culture, more than environment or genetics, drove height disparities in Early Neolithic Europe.


Subject(s)
Genetics, Population , Sex Characteristics , Female , Male , Humans , DNA, Mitochondrial , Europe , Isotopes
2.
Genome Biol ; 23(1): 250, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36510283

ABSTRACT

BACKGROUND: The pathogen landscape in the Early European Middle Ages remains largely unexplored. Here, we perform a systematic pathogen screening of the rural community Lauchheim "Mittelhofen," in present-day Germany, dated to the Merovingian period, between fifth and eighth century CE. Skeletal remains of individuals were subjected to an ancient DNA metagenomic analysis. Genomes of the detected pathogens were reconstructed and analyzed phylogenetically. RESULTS: Over 30% of the individuals exhibit molecular signs of infection with hepatitis B virus (HBV), parvovirus B19, variola virus (VARV), and Mycobacterium leprae. Seven double and one triple infection were detected. We reconstructed four HBV genomes and one genome each of B19, VARV, and M. leprae. All HBV genomes are of genotype D4 which is rare in Europe today. The VARV strain exhibits a unique pattern of gene loss indicating that viruses with different gene compositions were circulating in the Early Middle Ages. The M. leprae strain clustered in branch 3 together with the oldest to-date genome from the UK. CONCLUSIONS: The high burden of infectious disease, together with osteological markers of physiological stress, reflect a poor health status of the community. This could have been an indirect result of the climate decline in Europe at the time, caused by the Late Antique Little Ice Age (LALIA). Our findings suggest that LALIA may have created an ecological context in which persistent outbreaks set the stage for major epidemics of severe diseases such as leprosy and smallpox hundreds of years later.


Subject(s)
Coinfection , Leprosy , Middle Aged , Humans , Phylogeny , Mycobacterium leprae/genetics , Leprosy/epidemiology , Leprosy/history , Leprosy/microbiology , DNA, Ancient
3.
Sci Rep ; 11(1): 24185, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34921192

ABSTRACT

This paper presents the earliest evidence for the exploitation of lignite (brown coal) in Europe and sheds new light on the use of combustion fuel sources in the 2nd millennium BCE Eastern Mediterranean. We applied Thermal Desorption/Pyrolysis-Gas Chromatography-Mass Spectrometry and Polarizing Microscopy to the dental calculus of 67 individuals and we identified clear evidence for combustion markers embedded within this calculus. In contrast to the scant evidence for combustion markers within the calculus samples from Egypt, all other individuals show the inhalation of smoke from fires burning wood identified as Pinaceae, in addition to hardwood, such as oak and olive, and/or dung. Importantly, individuals from the Palatial Period at the Mycenaean citadel of Tiryns and the Cretan harbour site of Chania also show the inhalation of fire-smoke from lignite, consistent with the chemical signature of sources in the northwestern Peloponnese and Western Crete respectively. This first evidence for lignite exploitation was likely connected to and at the same time enabled Late Bronze Age Aegean metal and pottery production, significantly by both male and female individuals.

4.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33972424

ABSTRACT

The oral microbiome plays key roles in human biology, health, and disease, but little is known about the global diversity, variation, or evolution of this microbial community. To better understand the evolution and changing ecology of the human oral microbiome, we analyzed 124 dental biofilm metagenomes from humans, including Neanderthals and Late Pleistocene to present-day modern humans, chimpanzees, and gorillas, as well as New World howler monkeys for comparison. We find that a core microbiome of primarily biofilm structural taxa has been maintained throughout African hominid evolution, and these microbial groups are also shared with howler monkeys, suggesting that they have been important oral members since before the catarrhine-platyrrhine split ca. 40 Mya. However, community structure and individual microbial phylogenies do not closely reflect host relationships, and the dental biofilms of Homo and chimpanzees are distinguished by major taxonomic and functional differences. Reconstructing oral metagenomes from up to 100 thousand years ago, we show that the microbial profiles of both Neanderthals and modern humans are highly similar, sharing functional adaptations in nutrient metabolism. These include an apparent Homo-specific acquisition of salivary amylase-binding capability by oral streptococci, suggesting microbial coadaptation with host diet. We additionally find evidence of shared genetic diversity in the oral bacteria of Neanderthal and Upper Paleolithic modern humans that is not observed in later modern human populations. Differences in the oral microbiomes of African hominids provide insights into human evolution, the ancestral state of the human microbiome, and a temporal framework for understanding microbial health and disease.


Subject(s)
Biological Evolution , Ecology/methods , Hominidae/microbiology , Metagenome/genetics , Microbiota/genetics , Mouth/microbiology , Africa , Animals , Bacteria/classification , Bacteria/genetics , Biofilms , Dental Plaque/microbiology , Geography , Gorilla gorilla/microbiology , Hominidae/classification , Humans , Pan troglodytes/microbiology , Phylogeny
5.
Anat Rec (Hoboken) ; 304(12): 2811-2822, 2021 12.
Article in English | MEDLINE | ID: mdl-33773064

ABSTRACT

Cranial sutures join the many bones of the skull. They are therefore points of weakness and consequently subjected to the many mechanical stresses affecting the cranium. However, the way in which this impacts their morphological complexity remains unclear. We examine the intrinsic and extrinsic mechanisms of human sagittal sutures by quantifying the morphology from 107 individuals from archaeological populations spanning the Mesolithic to Middle ages, using standardized two-dimensional photographs. Results show that the most important factor determining sutural complexity appears to be the position along the cranial vault from the junction with the coronal suture at its anterior-most point to the junction with the lambdoid suture at its posterior-most point. Conversely, factors such as age and lifeways show few trends in complexity, the most significant of which is a lower complexity in the sutures of Mesolithic individuals who consumed a tougher diet. The simple technique used in this study therefore allowed us to identify that, taken together, structural aspects play a more important role in defining the complexity of the human sagittal suture than extrinsic factors such as the mechanical forces imposed on the cranium by individuals' diet.


Subject(s)
Cranial Sutures , Archaeology , Cranial Sutures/anatomy & histology , Head , Humans , Skull , Sutures
6.
iScience ; 24(12): 103397, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34988387

ABSTRACT

Recent studies have demonstrated the potential to recover ancient human mitochondrial DNA and nuclear DNA from cave sediments. However, the source of such sedimentary ancient DNA is still under discussion. Here we report the case of a Bronze Age human skeleton, found in a limestone cave, which was covered with layers of calcite stone deposits. By analyzing samples representing bones and stone deposits from this cave, we were able to: i) reconstruct the full human mitochondrial genome from the bones and the stones (same haplotype); ii) determine the sex of the individual; iii) reconstruct six ancient bacterial and archaeal genomes; and finally iv) demonstrate better ancient DNA preservation in the stones than in the bones. Thereby, we demonstrate the direct diffusion of human DNA from bones into the surrounding environment and show the potential to reconstruct ancient microbial genomes from such cave deposits, which represent an additional paleoarcheological archive resource.

7.
BMC Biol ; 18(1): 108, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32859198

ABSTRACT

BACKGROUND: Recent advances in sequencing have facilitated large-scale analyses of the metagenomic composition of different samples, including the environmental microbiome of air, water, and soil, as well as the microbiome of living humans and other animals. Analyses of the microbiome of ancient human samples may provide insights into human health and disease, as well as pathogen evolution, but the field is still in its very early stages and considered highly challenging. RESULTS: The metagenomic and pathogen content of Egyptian mummified individuals from different time periods was investigated via genetic analysis of the microbial composition of various tissues. The analysis of the dental calculus' microbiome identified Red Complex bacteria, which are correlated with periodontal diseases. From bone and soft tissue, genomes of two ancient pathogens, a 2200-year-old Mycobacterium leprae strain and a 2000-year-old human hepatitis B virus, were successfully reconstructed. CONCLUSIONS: The results show the reliability of metagenomic studies on Egyptian mummified individuals and the potential to use them as a source for the extraction of ancient pathogen DNA.


Subject(s)
Genome, Bacterial , Genome, Viral , Hepatitis B virus/genetics , Mummies/microbiology , Mycobacterium leprae/genetics , DNA, Ancient/analysis , Egypt , Humans , Metagenomics , Microbiota , Mummies/virology , Sequence Analysis, DNA
8.
PLoS One ; 14(4): e0201998, 2019.
Article in English | MEDLINE | ID: mdl-31013270

ABSTRACT

Hominin evolution is characterized by progressive regional differentiation, as well as migration waves, leading to anatomically modern humans that are assumed to have emerged in Africa and spread over the whole world. Why or whether Africa was the source region of modern humans and what caused their spread remains subject of ongoing debate. We present a spatially explicit, stochastic numerical model that includes ongoing mutations, demic diffusion, assortative mating and migration waves. Diffusion and assortative mating alone result in a structured population with relatively homogeneous regions bound by sharp clines. The addition of migration waves results in a power-law distribution of wave areas: for every large wave, many more small waves are expected to occur. This suggests that one or more out-of-Africa migrations would probably have been accompanied by numerous smaller migration waves across the world. The migration waves are considered "spontaneous", as the current model excludes environmental or other extrinsic factors. Large waves preferentially emanate from the central areas of large, compact inhabited areas. During the Pleistocene, Africa was the largest such area most of the time, making Africa the statistically most likely origin of anatomically modern humans, without a need to invoke additional environmental or ecological drivers.


Subject(s)
Biological Evolution , Genome, Human , Human Migration/history , Africa , Female , History, Ancient , Humans , Male
9.
Cell ; 175(5): 1185-1197.e22, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30415837

ABSTRACT

We report genome-wide ancient DNA from 49 individuals forming four parallel time transects in Belize, Brazil, the Central Andes, and the Southern Cone, each dating to at least ∼9,000 years ago. The common ancestral population radiated rapidly from just one of the two early branches that contributed to Native Americans today. We document two previously unappreciated streams of gene flow between North and South America. One affected the Central Andes by ∼4,200 years ago, while the other explains an affinity between the oldest North American genome associated with the Clovis culture and the oldest Central and South Americans from Chile, Brazil, and Belize. However, this was not the primary source for later South Americans, as the other ancient individuals derive from lineages without specific affinity to the Clovis-associated genome, suggesting a population replacement that began at least 9,000 years ago and was followed by substantial population continuity in multiple regions.


Subject(s)
Genetics, Population/history , Genome, Human , Central America , DNA, Ancient/analysis , DNA, Mitochondrial/genetics , Gene Flow , History, Ancient , Humans , Models, Theoretical , South America
10.
Nat Commun ; 8: 15694, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28556824

ABSTRACT

Egypt, located on the isthmus of Africa, is an ideal region to study historical population dynamics due to its geographic location and documented interactions with ancient civilizations in Africa, Asia and Europe. Particularly, in the first millennium BCE Egypt endured foreign domination leading to growing numbers of foreigners living within its borders possibly contributing genetically to the local population. Here we present 90 mitochondrial genomes as well as genome-wide data sets from three individuals obtained from Egyptian mummies. The samples recovered from Middle Egypt span around 1,300 years of ancient Egyptian history from the New Kingdom to the Roman Period. Our analyses reveal that ancient Egyptians shared more ancestry with Near Easterners than present-day Egyptians, who received additional sub-Saharan admixture in more recent times. This analysis establishes ancient Egyptian mummies as a genetic source to study ancient human history and offers the perspective of deciphering Egypt's past at a genome-wide level.


Subject(s)
DNA, Mitochondrial/genetics , Genome, Human/genetics , Mummies/history , Africa South of the Sahara , Anthropology , Asia , Cell Nucleus/metabolism , Egypt , Europe , Gene Library , Genotype , Geography , Haplotypes , History, Ancient , Humans , Phenotype , Population Dynamics , Principal Component Analysis
11.
Nature ; 544(7650): 357-361, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28273061

ABSTRACT

Recent genomic data have revealed multiple interactions between Neanderthals and modern humans, but there is currently little genetic evidence regarding Neanderthal behaviour, diet, or disease. Here we describe the shotgun-sequencing of ancient DNA from five specimens of Neanderthal calcified dental plaque (calculus) and the characterization of regional differences in Neanderthal ecology. At Spy cave, Belgium, Neanderthal diet was heavily meat based and included woolly rhinoceros and wild sheep (mouflon), characteristic of a steppe environment. In contrast, no meat was detected in the diet of Neanderthals from El Sidrón cave, Spain, and dietary components of mushrooms, pine nuts, and moss reflected forest gathering. Differences in diet were also linked to an overall shift in the oral bacterial community (microbiota) and suggested that meat consumption contributed to substantial variation within Neanderthal microbiota. Evidence for self-medication was detected in an El Sidrón Neanderthal with a dental abscess and a chronic gastrointestinal pathogen (Enterocytozoon bieneusi). Metagenomic data from this individual also contained a nearly complete genome of the archaeal commensal Methanobrevibacter oralis (10.2× depth of coverage)-the oldest draft microbial genome generated to date, at around 48,000 years old. DNA preserved within dental calculus represents a notable source of information about the behaviour and health of ancient hominin specimens, as well as a unique system that is useful for the study of long-term microbial evolution.


Subject(s)
DNA, Ancient/analysis , Dental Calculus/chemistry , Diet/history , Food Preferences , Health/history , Neanderthals/microbiology , Neanderthals/psychology , Animals , Belgium , Carnivory , Caves , Enterocytozoon/genetics , Enterocytozoon/isolation & purification , Genome, Bacterial/genetics , History, Ancient , Humans , Intestines/microbiology , Meat/history , Methanobrevibacter/genetics , Methanobrevibacter/isolation & purification , Mouth/microbiology , Pan troglodytes/microbiology , Penicillium/chemistry , Perissodactyla , Sheep , Spain , Stomach/microbiology , Symbiosis , Time Factors , Vegetarians/history
12.
Sci Rep ; 6: 29458, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27385276

ABSTRACT

Across much of central Europe, the Linearbandkeramik (LBK) represents the first Neolithic communities. Arising in Transdanubia around 5500 cal. BC the LBK spread west to the Rhine within two to three hundred years, carrying elements of a mixed agricultural economy and a relatively homogeneous material culture. Colonisation of new regions during this progress would have required economic adaptations to varied ecological conditions within the landscape. This paper investigates whether such adaptation at a local scale affected health patterns and altered the dietary habits of populations that otherwise shared a common cultural and biological origin. Analysis of non-specific stress (linear enamel hypoplasia, porotic hyperostosis, cribra orbitalia) within five LBK populations from across central Europe in conjunction with published carbon and nitrogen stable isotope data from each site revealed a high prevalence of porotic hyperostosis and cribra orbitalia in western populations that was associated with a lower animal protein intake. Hypoplastic enamel was more frequently observed in eastern populations however, and may reflect geographic differences in childhood morbidity and mortality as a result of variation in social practices relating to weaning. Local socio-economic adaptations within the LBK were therefore an important factor in the exposure of populations to non-specific stress.


Subject(s)
Body Remains/anatomy & histology , DNA, Mitochondrial/genetics , Dental Enamel Hypoplasia/epidemiology , Hyperostosis/epidemiology , Adaptation, Biological , Animals , Anthropology, Physical , Archaeology , Europe/epidemiology , Farmers , Feeding Behavior , Health Surveys , Social Adjustment , Weaning
13.
Curr Biol ; 26(6): 827-33, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-26853362

ABSTRACT

How modern humans dispersed into Eurasia and Australasia, including the number of separate expansions and their timings, is highly debated [1, 2]. Two categories of models are proposed for the dispersal of non-Africans: (1) single dispersal, i.e., a single major diffusion of modern humans across Eurasia and Australasia [3-5]; and (2) multiple dispersal, i.e., additional earlier population expansions that may have contributed to the genetic diversity of some present-day humans outside of Africa [6-9]. Many variants of these models focus largely on Asia and Australasia, neglecting human dispersal into Europe, thus explaining only a subset of the entire colonization process outside of Africa [3-5, 8, 9]. The genetic diversity of the first modern humans who spread into Europe during the Late Pleistocene and the impact of subsequent climatic events on their demography are largely unknown. Here we analyze 55 complete human mitochondrial genomes (mtDNAs) of hunter-gatherers spanning ∼35,000 years of European prehistory. We unexpectedly find mtDNA lineage M in individuals prior to the Last Glacial Maximum (LGM). This lineage is absent in contemporary Europeans, although it is found at high frequency in modern Asians, Australasians, and Native Americans. Dating the most recent common ancestor of each of the modern non-African mtDNA clades reveals their single, late, and rapid dispersal less than 55,000 years ago. Demographic modeling not only indicates an LGM genetic bottleneck, but also provides surprising evidence of a major population turnover in Europe around 14,500 years ago during the Late Glacial, a period of climatic instability at the end of the Pleistocene.


Subject(s)
DNA, Ancient , DNA, Mitochondrial/genetics , Genome, Human , Africa , Black People/genetics , Emigration and Immigration , Europe , Genetic Variation , Genome, Mitochondrial , Haplotypes , Humans , White People/genetics
14.
Nature ; 522(7555): 207-11, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-25731166

ABSTRACT

We generated genome-wide data from 69 Europeans who lived between 8,000-3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms. Enrichment of these positions decreases the sequencing required for genome-wide ancient DNA analysis by a median of around 250-fold, allowing us to study an order of magnitude more individuals than previous studies and to obtain new insights about the past. We show that the populations of Western and Far Eastern Europe followed opposite trajectories between 8,000-5,000 years ago. At the beginning of the Neolithic period in Europe, ∼8,000-7,000 years ago, closely related groups of early farmers appeared in Germany, Hungary and Spain, different from indigenous hunter-gatherers, whereas Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a ∼24,000-year-old Siberian. By ∼6,000-5,000 years ago, farmers throughout much of Europe had more hunter-gatherer ancestry than their predecessors, but in Russia, the Yamnaya steppe herders of this time were descended not only from the preceding eastern European hunter-gatherers, but also from a population of Near Eastern ancestry. Western and Eastern Europe came into contact ∼4,500 years ago, as the Late Neolithic Corded Ware people from Germany traced ∼75% of their ancestry to the Yamnaya, documenting a massive migration into the heartland of Europe from its eastern periphery. This steppe ancestry persisted in all sampled central Europeans until at least ∼3,000 years ago, and is ubiquitous in present-day Europeans. These results provide support for a steppe origin of at least some of the Indo-European languages of Europe.


Subject(s)
Cultural Evolution/history , Grassland , Human Migration/history , Language/history , Europe/ethnology , Genome, Human/genetics , History, Ancient , Humans , Male , Polymorphism, Genetic/genetics , Population Dynamics , Russia
15.
Nature ; 513(7518): 409-13, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-25230663

ABSTRACT

We sequenced the genomes of a ∼7,000-year-old farmer from Germany and eight ∼8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations' deep relationships and show that early European farmers had ∼44% ancestry from a 'basal Eurasian' population that split before the diversification of other non-African lineages.


Subject(s)
Genome, Human/genetics , White People/classification , White People/genetics , Agriculture/history , Asia/ethnology , Europe , History, Ancient , Humans , Population Dynamics , Principal Component Analysis , Workforce
16.
Anat Rec (Hoboken) ; 297(6): 1103-14, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24782319

ABSTRACT

On a basis of a method for muscle cross-sectional area estimation from cortical bone area that was previously developed (Slizewski et al. Anat Rec 2013; 296:1695-1707), we reconstructed muscle cross-sectional area at 65% of radius length for a sample of Neolithic human remains from the Linear Pottery Culture (ca. 5,700-4,900 years BC). Muscle cross-sectional area estimations for the Neolithic sample were compared to in vivo measurements from a recent human sample. Results demonstrate that the Neolithic individuals had larger muscle cross-sectional area relative to radius length than the contemporary humans and that their forearms were more muscular and robust. We also found significant differences in relative muscle cross-sectional area between Neolithic and recent children that indicate different levels of physical stress and isometric activities. Our results fit into the framework of studies previously published about the sample and the Linear Pottery Culture. Therefore, the new approach was successfully applied to an archaeological sample for the first time here. Results of our pilot study indicate that muscle cross-sectional area estimation could in the future supplement other anthropological methods currently in use for the analysis of postcranial remains.


Subject(s)
Forearm/anatomy & histology , Muscle, Skeletal/anatomy & histology , Fossils , Humans , Image Processing, Computer-Assisted , Pilot Projects
17.
Proc Natl Acad Sci U S A ; 109(24): 9326-30, 2012 Jun 12.
Article in English | MEDLINE | ID: mdl-22645332

ABSTRACT

Community differentiation is a fundamental topic of the social sciences, and its prehistoric origins in Europe are typically assumed to lie among the complex, densely populated societies that developed millennia after their Neolithic predecessors. Here we present the earliest, statistically significant evidence for such differentiation among the first farmers of Neolithic Europe. By using strontium isotopic data from more than 300 early Neolithic human skeletons, we find significantly less variance in geographic signatures among males than we find among females, and less variance among burials with ground stone adzes than burials without such adzes. From this, in context with other available evidence, we infer differential land use in early Neolithic central Europe within a patrilocal kinship system.


Subject(s)
Agriculture , Family , Europe , Female , Geography , History, Ancient , Humans , Male
18.
Front Oral Biol ; 13: 184-189, 2009.
Article in English | MEDLINE | ID: mdl-19828994

ABSTRACT

Tooth cementum annulation (TCA) technique has been a frequently discussed method for the individual age estimation. Conflicting statements on its accuracy and applicability in previous publications have provoked our research. The accuracy and bias of the TCA age estimates were examined in a sample of 116 teeth from 65 individuals of known age and sex from the anatomical collection of the University of Tubingen (Germany). Incremental lines were counted on enhanced digital images of undecalcified, unstained, 60-80 microm thick cross-sections from the middle third of the root of single-rooted teeth. Maximal line counts resulted in age estimates that correlated best with the real age of the specimens. In this sample, this argument is supported by the observation that the mean number of lines increased significantly from the most cervical to the most apical section. Reasonably accurate age estimates based on TCA counts were only obtained in young adults. Both accuracy and bias continuously decreased with the increasing age of the individuals. A considerable underestimation of age occurred in individuals older than 40 years. Due to the conflicting results on the accuracy of the TCA technique this method should be used for age estimation only in association with the macroscopic examination.


Subject(s)
Age Determination by Teeth/methods , Cementogenesis , Dental Cementum , Forensic Dentistry/methods , Adult , Aged , Aged, 80 and over , Europe , Female , Humans , Male , Middle Aged , Observer Variation , Reproducibility of Results , Sri Lanka , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...