Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1185741, 2023.
Article in English | MEDLINE | ID: mdl-37228615

ABSTRACT

Innate immunity is the body's first line of defense against infections. Innate immune cells express pattern recognition receptors in distinct cellular compartments that are responsible to detect either pathogens-associated molecules or cellular components derived from damaged cells, to trigger intracellular signaling pathways that lead to the activation of inflammatory responses. Inflammation is essential to coordinate immune cell recruitment, pathogen elimination and to keep normal tissue homeostasis. However, uncontrolled, misplaced or aberrant inflammatory responses could lead to tissue damage and drive chronic inflammatory diseases and autoimmunity. In this context, molecular mechanisms that tightly regulate the expression of molecules required for the signaling of innate immune receptors are crucial to prevent pathological immune responses. In this review, we discuss the ubiquitination process and its importance in the regulation of innate immune signaling and inflammation. Then, we summarize the roles of Smurf1, a protein that works on ubiquitination, on the regulation of innate immune signaling and antimicrobial mechanisms, emphasizing its substrates and highlighting its potential as a therapeutic target for infectious and inflammatory conditions.


Subject(s)
Signal Transduction , Ubiquitin , Humans , Ubiquitin/metabolism , Immunity, Innate , Inflammation , Ubiquitin-Protein Ligases/metabolism
2.
Hum Vaccin Immunother ; 13(5): 1040-1050, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28059670

ABSTRACT

Previously we showed that 65-kDa Mycobacterium leprae heat shock protein (Hsp65) is a target for the development of a tuberculosis vaccine. Here we evaluated peripheral blood mononuclear cells (PBMC) from healthy individuals or tuberculosis patients stimulated with two forms of Hsp65 antigen, recombinant DNA that encodes Hsp65 (DNA-HSP65) or recombinant Hsp65 protein (rHsp65) in attempting to mimic a prophylactic or therapeutic study in vitro, respectively. Proliferation and cytokine-producing CD4+ or CD8+ cell were assessed by flow cytometry. The CD4+ cell proliferation from healthy individuals was stimulated by DNA-HSP65 and rHsp65, while CD8+ cell proliferation from healthy individuals or tuberculosis patients was stimulated by rHSP65. DNA-HSP65 did not improve the frequency of IFN-gamma+ cells from healthy individuals or tuberculosis patients. Furthermore, we found an increase in the frequency of IL-10-producing cells in both groups. These findings show that Hsp65 antigen activates human lymphocytes and plays an immune regulatory role that should be addressed as an additional antigen for the development of antigen-combined therapies.


Subject(s)
Bacterial Proteins/immunology , Chaperonin 60/immunology , Immunity, Cellular , Lymphocyte Activation , Tuberculosis/immunology , Adult , Bacterial Proteins/genetics , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Chaperonin 60/genetics , Cytotoxicity, Immunologic , Female , Healthy Volunteers , Humans , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Interleukin-10/biosynthesis , Interleukin-10/immunology , Leukocytes, Mononuclear/immunology , Macrophages, Alveolar/immunology , Male , Middle Aged , Mycobacterium tuberculosis/immunology , Recombinant Proteins/immunology , Tuberculosis Vaccines/immunology , Up-Regulation , Vaccines, DNA/pharmacology , Young Adult
3.
ISRN Inflamm ; 2013: 259256, 2013.
Article in English | MEDLINE | ID: mdl-24049657

ABSTRACT

Monocyte migration into tissues, an important event in inflammation, requires an intricate interplay between determinants on cell surfaces and extracellular matrix (ECM). Galectin-3 is able to modulate cell-ECM interactions and is an important mediator of inflammation. In this study, we sought to investigate whether interactions established between galectin-3 and ECM glycoproteins are involved in monocyte migration, given that the mechanisms by which monocytes move across the endothelium and through the extravascular tissue are poorly understood. Using the in vitro transwell system, we demonstrated that monocyte migration was potentiated in the presence of galectin-3 plus laminin or fibronectin, but not vitronectin, and was dependent on the carbohydrate recognition domain of the lectin. Only galectin-3-fibronectin combinations potentiated the migration of monocyte-derived macrophages. In binding assays, galectin-3 did not bind to fibronectin, whereas both the full-length and the truncated forms of the lectin, which retains carbohydrate binding ability, were able to bind to laminin. Our results show that monocytes migrate through distinct mechanisms and selective interactions with the extracellular matrix driven by galectin-3. We suggest that the lectin may bridge monocytes to laminin and may also activate these cells, resulting in the positive regulation of other adhesion molecules and cell adhesion to fibronectin.

4.
Immunology ; 137(3): 239-48, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22891805

ABSTRACT

CD4(+) Foxp3(+) regulatory T cells inhibit the production of interferon-γ, which is the major mediator of protection against Mycobacterium tuberculosis infection. In this study, we evaluated whether the protection conferred by three different vaccines against tuberculosis was associated with the number of spleen and lung regulatory T cells. We observed that after homologous immunization with the 65 000 molecular weight heat-shock protein (hsp 65) DNA vaccine, there was a significantly higher number of spleen CD4(+) Foxp3(+) cells compared with non-immunized mice. Heterologous immunization using bacillus Calmette-Guérin (BCG) to prime and DNA-hsp 65 to boost (BCG/DNA-hsp 65) or BCG to prime and culture filtrate proteins (CFP)-CpG to boost (BCG/CFP-CpG) induced a significantly higher ratio of spleen CD4(+) /CD4(+) Foxp3(+) cells compared with non-immunized mice. In addition, the protection conferred by either the BCG/DNA-hsp 65 or the BCG/CFP-CpG vaccines was significant compared with the DNA-hsp 65 vaccine. Despite the higher ratio of spleen CD4(+) /CD4(+) Foxp3(+) cells found in BCG/DNA-hsp 65-immunized or BCG/CFP-CpG-immunized mice, the lungs of both groups of mice were better preserved than those of DNA-hsp 65-immunized mice. These results confirm the protective efficacy of BCG/DNA-hsp 65 and BCG/CFP-CpG heterologous prime-boost vaccines and the DNA-hsp 65 homologous vaccine. Additionally, the prime-boost regimens assayed here represent a promising strategy for the development of new vaccines to protect against tuberculosis because they probably induce a proper ratio of CD4(+) and regulatory (CD4(+) Foxp3(+) ) cells during the immunization regimen. In this study, this ratio was associated with a reduced number of regulatory cells and no injury to the lungs.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Tuberculosis Vaccines/immunology , Vaccines, DNA/immunology , Animals , Bacterial Proteins/immunology , Chaperonin 60/immunology , Female , Forkhead Transcription Factors/immunology , Mice , Mice, Inbred BALB C , Mycobacterium tuberculosis/immunology , Spleen/immunology , Tuberculosis/immunology , Tuberculosis/pathology
5.
Tuberculosis (Edinb) ; 90(2): 135-42, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20188631

ABSTRACT

Experimental models of infection are good tools for establishing immunological parameters that have an effect on the host-pathogen relationship and also for designing new vaccines and immune therapies. In this work, we evaluated the evolution of experimental tuberculosis in mice infected with increasing bacterial doses or via distinct routes. We showed that mice infected with low bacterial doses by the intratracheal route were able to develop a progressive infection that was proportional to the inoculum size. In the initial phase of disease, mice developed a specific Th1-driven immune response independent of inoculum concentration. However, in the late phase, mice infected with higher concentrations exhibited a mixed Th1/Th2 response, while mice infected with lower concentrations sustained the Th1 pattern. Significant IL-10 concentrations and a more preeminent T regulatory cell recruitment were also detected at 70 days post-infection with high bacterial doses. These results suggest that mice infected with higher concentrations of bacilli developed an immune response similar to the pattern described for human tuberculosis wherein patients with progressive tuberculosis exhibit a down modulation of IFN-gamma production accompanied by increased levels of IL-4. Thus, these data indicate that the experimental model is important in evaluating the protective efficacy of new vaccines and therapies against tuberculosis.


Subject(s)
Interferon-gamma/immunology , Mycobacterium tuberculosis/immunology , T-Lymphocytes/immunology , Tuberculosis Vaccines/pharmacology , Tuberculosis/prevention & control , Animals , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Immunotherapy , Mice , Mycobacterium tuberculosis/pathogenicity , Tuberculosis/drug therapy , Tuberculosis/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...