Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
J Extracell Vesicles ; 13(8): e12498, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39140467

ABSTRACT

High-sensitivity flow cytometers have been developed for multi-parameter characterization of single extracellular vesicles (EVs), but performance varies among instruments and calibration methods. Here we compare the characterization of identical (split) EV samples derived from human colorectal cancer (DiFi) cells by three high-sensitivity flow cytometers, two commercial instruments, CytoFLEX/CellStream, and a custom single-molecule flow cytometer (SMFC). DiFi EVs were stained with the membrane dye di-8-ANEPPS and with PE-conjugated anti-EGFR or anti-tetraspanin (CD9/CD63/CD81) antibodies for estimation of EV size and surface protein copy numbers. The limits of detection (LODs) for immunofluorescence and vesicle size based on calibration using cross-calibrated, hard-dyed beads were ∼10 PE/∼80 nm EV diameter for CytoFLEX and ∼10 PEs/∼67 nm for CellStream. For the SMFC, the LOD for immunofluorescence was 1 PE and ≤ 35 nm for size. The population of EVs detected by each system (di-8-ANEPPS+/PE+ particles) differed widely depending on the LOD of the system; for example, CellStream/CytoFLEX detected only 5.7% and 1.5% of the tetraspanin-labelled EVs detected by SMFC, respectively, and median EV diameter and antibody copy numbers were much larger for CellStream/CytoFLEX than for SMFC as measured and validated using super-resolution/single-molecule TIRF microscopy. To obtain a dataset representing a common EV population analysed by all three platforms, we filtered out SMFC and CellStream measurements for EVs below the CytoFLEX LODs as determined by bead calibration (10 PE/80 nm). The inter-platform agreement using this filtered dataset was significantly better than for the unfiltered dataset, but even better concordance between results was obtained by applying higher cutoffs (21 PE/120 nm) determined by threshold analysis using the SMFC data. The results demonstrate the impact of specifying LODs to define the EV population analysed on inter-instrument reproducibility in EV flow cytometry studies, and the utility of threshold analysis of SMFC data for providing semi-quantitative LOD values for other flow cytometers.


Subject(s)
Extracellular Vesicles , Flow Cytometry , Flow Cytometry/methods , Flow Cytometry/instrumentation , Humans , Extracellular Vesicles/metabolism , Colorectal Neoplasms/diagnosis , Cell Line, Tumor , Single Molecule Imaging/methods , Single Molecule Imaging/instrumentation
2.
RNA Biol ; 21(1): 17-31, 2024 Jan.
Article in English | MEDLINE | ID: mdl-39107918

ABSTRACT

Extracellular vesicles and nanoparticles (EVPs) are now recognized as a novel form of cell-cell communication. All cells release a wide array of heterogeneous EVPs with distinct protein, lipid, and RNA content, dependent on the pathophysiological state of the donor cell. The overall cargo content in EVPs is not equivalent to cellular levels, implying a regulated pathway for selection and export. In cancer, release and uptake of EVPs within the tumour microenvironment can influence growth, proliferation, invasiveness, and immune evasion. Secreted EVPs can also have distant, systemic effects that can promote metastasis. Here, we review current knowledge of EVP biogenesis and cargo selection with a focus on the role that extracellular RNA plays in oncogenesis and metastasis. Almost all subtypes of RNA have been identified in EVPs, with miRNAs being the best characterized. We review the roles of specific miRNAs that have been detected in EVPs and that play a role in oncogenesis and metastasis.


Subject(s)
Carcinogenesis , Drug Resistance, Neoplasm , Extracellular Vesicles , MicroRNAs , Neoplasm Metastasis , Neoplasms , Tumor Microenvironment , Humans , Extracellular Vesicles/metabolism , Drug Resistance, Neoplasm/genetics , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Carcinogenesis/genetics , Animals , Gene Expression Regulation, Neoplastic , Cell Communication
3.
Commun Biol ; 7(1): 677, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830977

ABSTRACT

We present a quantitative sandwich immunoassay for CD63 Extracellular Vesicles (EVs) and a constituent surface cargo, EGFR and its activity state, that provides a sensitive, selective, fluorophore-free and rapid alternative to current EV-based diagnostic methods. Our sensing design utilizes a charge-gating strategy, with a hydrophilic anion exchange membrane functionalized with capture antibodies and a charged silica nanoparticle reporter functionalized with detection antibodies. With sensitivity and robustness enhancement by the ion-depletion action of the membrane, this hydrophilic design with charged reporters minimizes interference from dispersed proteins, thus enabling direct plasma analysis without the need for EV isolation or sensor blocking. With a LOD of 30 EVs/µL and a high relative sensitivity of 0.01% for targeted proteomic subfractions, our assay enables accurate quantification of the EV marker, CD63, with colocalized EGFR by an operator/sample insensitive universal normalized calibration. We analysed untreated clinical samples of Glioblastoma to demonstrate this new platform. Notably, we target both total and "active" EGFR on EVs; with a monoclonal antibody mAb806 that recognizes a normally hidden epitope on overexpressed or mutant variant III EGFR. Analysis of samples yielded an area-under-the-curve (AUC) value of 0.99 and a low p-value of 0.000033, surpassing the performance of existing assays and markers.


Subject(s)
ErbB Receptors , Extracellular Vesicles , Glioblastoma , Tetraspanin 30 , Humans , Glioblastoma/blood , Glioblastoma/diagnosis , Glioblastoma/metabolism , Tetraspanin 30/metabolism , ErbB Receptors/metabolism , Extracellular Vesicles/metabolism , Immunoassay/methods , Biomarkers, Tumor/blood , Biomarkers, Tumor/metabolism , Brain Neoplasms/blood , Brain Neoplasms/metabolism , Brain Neoplasms/diagnosis
4.
Extracell Vesicle ; 32024 Jun.
Article in English | MEDLINE | ID: mdl-38872853

ABSTRACT

Antibodies are critical tools for research into extracellular vesicles (EVs) and other extracellular nanoparticles (ENPs), where they can be used for their identification, characterization, and isolation. However, the lack of a centralized antibody platform where researchers can share validation results thus minimizing wasted personnel time and reagents, has been a significant obstacle. Moreover, because the performance of antibodies varies among assay types and conditions, detailed information on assay variables and protocols is also of value. To facilitate sharing of results on antibodies that are relevant to EV/ENP research, the EV Antibody Database has been developed by the investigators of the Extracellular RNA Communication Consortium (ERCC). Hosted by the ExRNA Portal (https://exrna.org/resources/evabdb/), this interactive database aggregates and shares results from antibodies that have been tested by research groups in the EV/ENP field. Currently, the EV Antibody Database includes modules for antibodies tested for western Blot, EV Flow Cytometry, and EV Sandwich Assays, and holds 110 records contributed by 6 laboratories from the ERCC. Detailed information on antibody sources, assay conditions, and results is provided, including negative results. We encourage ongoing expert input and community feedback to enhance the database's utility, making it a valuable resource for comprehensive validation data on antibodies and protocols in EV biology.

5.
bioRxiv ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38826470

ABSTRACT

Extracellular communication via the transfer of vesicles and nanoparticles is now recognized to play an important role in tumor microenvironment interactions. Cancer cells upregulate and secrete abundant levels of miR-100 and miR-125b that can alter gene expression by both cell- and non-cell-autonomous mechanisms. We previously showed that these miRNAs activate Wnt signaling in colorectal cancer (CRC) through noncanonical pairing with 5 negative regulators of Wnt signaling. To identify additional targets of miR-100 and miR-125b , we used bioinformatic approaches comparing multiple CRC cell lines, including knockout lines lacking one or both of these miRNAs. From an initial list of 96 potential mRNA targets, we tested 15 targets with 8 showing significant downregulation in the presence of miR-100 and miR-125b . Among these, Cingulin (CGN) and Protein tyrosine phosphatase receptor type-R (PTPRR) are downregulated in multiple cancers, consistent with regulation by increased levels of miR-100 and miR-125b. We also show that increased cellular levels of miR-100 and miR-125b enhance 3D growth and invasiveness in CRC and glioblastoma cell lines. Lastly, we demonstrate that extracellular transfer of miR-100 and miR-125b can silence both reporter and endogenous mRNA targets in recipient cells and also increase the invasiveness of recipient spheroid colonies when grown under 3D conditions in type I collagen.

6.
Hortic Res ; 11(2): uhad286, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38487294

ABSTRACT

Accurate and real-time monitoring of grapevine freezing tolerance is crucial for the sustainability of the grape industry in cool climate viticultural regions. However, on-site data are limited due to the complexity of measurement. Current prediction models underperform under diverse climate conditions, which limits the large-scale deployment of these methods. We combined grapevine freezing tolerance data from multiple regions in North America and generated a predictive model based on hourly temperature-derived features and cultivar features using AutoGluon, an automated machine learning engine. Feature importance was quantified by AutoGluon and SHAP (SHapley Additive exPlanations) value. The final model was evaluated and compared with previous models for its performance under different climate conditions. The final model achieved an overall 1.36°C root-mean-square error during model testing and outperformed two previous models using three test cultivars at all testing regions. Two feature importance quantification methods identified five shared essential features. Detailed analysis of the features indicates that the model has adequately extracted some biological mechanisms during training. The final model, named NYUS.2, was deployed along with two previous models as an R shiny-based application in the 2022-23 dormancy season, enabling large-scale and real-time simulation of grapevine freezing tolerance in North America for the first time.

7.
bioRxiv ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38293013

ABSTRACT

5-fluorouracil (5-FU) has been used for chemotherapy for colorectal and other cancers for over 50 years. The prevailing view of its mechanism of action is inhibition of thymidine synthase leading to defects in DNA replication and repair. However, 5-FU is also incorporated into RNA causing toxicity due to defects in RNA metabolism, inhibition of pseudouridine modification, and altered ribosome function. Here, we examine the impact of 5-FU on the expression and export of small RNAs (sRNAs) into small extracellular vesicles (sEVs). Moreover, we assess the role of 5-FU in regulation of post-transcriptional sRNA modifications (PTxM) using mass spectrometry approaches. EVs are secreted by all cells and contain a variety of proteins and RNAs that can function in cell-cell communication. PTxMs on cellular and extracellular sRNAs provide yet another layer of gene regulation. We found that treatment of the colorectal cancer (CRC) cell line DLD-1 with 5-FU led to surprising differential export of miRNA snRNA, and snoRNA transcripts. Strikingly, 5-FU treatment significantly decreased the levels of pseudouridine on both cellular and secreted EV sRNAs. In contrast, 5-FU exposure led to increased levels of cellular sRNAs containing a variety of methyl-modified bases. Our results suggest that 5-FU exposure leads to altered expression, base modifications, and mislocalization of EV base-modified sRNAs.

8.
bioRxiv ; 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37905113

ABSTRACT

We present a novel quantitative immunoassay for CD63 EVs (extracellular vesicles) and a constituent surface cargo, EGFR and its activity state, that provides a sensitive, selective, fluorophore-free and rapid alternative to current EV-based diagnostic methods. Our sensing design utilizes a charge-gating strategy, with a hydrophilic anion exchange membrane and a charged silica nanoparticle reporter. With sensitivity and robustness enhancement by the ion-depletion action of the membrane, this hydrophilic design with charged reporters minimizes interference from dispersed proteins and fluorophore degradation, thus enabling direct plasma analysis. With a limit of detection of 30 EVs/µL and a high relative sensitivity of 0.01% for targeted proteomic subfractions, our assay enables accurate quantification of the EV marker, CD63, with colocalized EGFR by an operator/sample insensitive universal normalized calibration. Glioblastoma necessitates improved non-invasive diagnostic approaches for early detection and monitoring. Notably, we target both total and "active" EGFR on EVs; with a monoclonal antibody mAb806 that recognizes a normally hidden epitope on overexpressed or mutant variant III EGFR. This approach offers direct glioblastoma detection from untreated human patient samples. Analysis of glioblastoma clinical samples yielded an area-under-the-curve (AUC) value of 0.99 and low p-value of 0.000033, significantly surpassing the performance of existing assays and markers.

9.
Nano Lett ; 23(16): 7500-7507, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37552655

ABSTRACT

This study addresses the challenge of trapping nanoscale biological particles using optical tweezers without the photothermal heating effect and the limitation presented by the diffraction limit. Optical tweezers are effective for trapping microscopic biological objects but not for nanoscale specimens due to the diffraction limit. To overcome this, we present an approach that uses optical anapole states in all-dielectric nanoantenna systems on distributed Bragg reflector substrates to generate strong optical gradient force and potential on nanoscale biological objects with negligible temperature rise below 1 K. The anapole antenna condenses the accessible electromagnetic energy to scales as small as 30 nm. Using this approach, we successfully trapped nanosized extracellular vesicles and supermeres (approximately 25 nm in size) using low laser power of only 10.8 mW. This nanoscale optical trapping platform has great potential for single molecule analysis while precluding photothermal degradation.

10.
Cell Genom ; 3(5): 100303, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37228754

ABSTRACT

Although the role of RNA binding proteins (RBPs) in extracellular RNA (exRNA) biology is well established, their exRNA cargo and distribution across biofluids are largely unknown. To address this gap, we extend the exRNA Atlas resource by mapping exRNAs carried by extracellular RBPs (exRBPs). This map was developed through an integrative analysis of ENCODE enhanced crosslinking and immunoprecipitation (eCLIP) data (150 RBPs) and human exRNA profiles (6,930 samples). Computational analysis and experimental validation identified exRBPs in plasma, serum, saliva, urine, cerebrospinal fluid, and cell-culture-conditioned medium. exRBPs carry exRNA transcripts from small non-coding RNA biotypes, including microRNA (miRNA), piRNA, tRNA, small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), Y RNA, and lncRNA, as well as protein-coding mRNA fragments. Computational deconvolution of exRBP RNA cargo reveals associations of exRBPs with extracellular vesicles, lipoproteins, and ribonucleoproteins across human biofluids. Overall, we mapped the distribution of exRBPs across human biofluids, presenting a resource for the community.

11.
Nat Protoc ; 18(5): 1462-1487, 2023 05.
Article in English | MEDLINE | ID: mdl-36914899

ABSTRACT

There is an increasing appreciation for the heterogeneous nature of extracellular vesicles (EVs). In addition, two nonvesicular extracellular nanoparticles (NVEPs), exomeres and supermeres, have been discovered recently that are enriched in many cargo previously ascribed to EVs. The EV field has largely focused on EV isolation and characterization, while studies on NVEPs are limited. At this juncture, it is critically important to have robust and reliable methods to separate distinct populations of EVs and NVEPs to assign cargo to their correct carrier. Here, we provide a comprehensive step-by-step protocol for sequential isolation of large and small EVs, nonvesicular fractions, exomeres and supermeres from the same starting material. We describe in detail the use of differential ultracentrifugation, filtration, concentration and high-resolution density-gradient fractionation to obtain purified fractions of distinct populations of EVs and NVEPs. This protocol allows assignment and enrichment of a biomolecule of interest to its specific extracellular compartment. Compared to other isolation methods, our protocol has unique advantages, including high purity and reproducibility, with minimal expertise required. The protocol can be applied to purification of EVs and NVEPs from cell culture medium and human plasma and requires ~72 h to complete. Adoption of this protocol will help translational investigators identify potential circulating biomarkers and therapeutic targets for a host of human diseases and allow basic scientists to better understand EV and NVEP biogenesis and function. Overall, this protocol will allow those interested in isolating EVs and extracellular particles to advance scientific inquiry to answer outstanding questions in the field.


Subject(s)
Extracellular Vesicles , Nanoparticles , Humans , Reproducibility of Results , Ultracentrifugation , Filtration
12.
Trends Cell Biol ; 33(8): 667-681, 2023 08.
Article in English | MEDLINE | ID: mdl-36737375

ABSTRACT

The study of extracellular vesicles (EVs) and nanoparticles (NPs) is rapidly expanding because recent discoveries have revealed a much greater complexity and diversity than was appreciated only a few years ago. New types of EVs and NPs have recently been described. Proteins and nucleic acids previously thought to be packaged in exosomes appear to be more enriched in different types of EVs and in two recently identified amembranous NPs, exomeres and supermeres. Thus, our understanding of the cell biology and intercellular communication facilitated by the release of EVs and NPs is in a state of flux. In this review, we describe the different types of EVs and NPs, highlight recent advances, and present major outstanding questions.


Subject(s)
Exosomes , Extracellular Vesicles , Nucleic Acids , Humans , Extracellular Vesicles/metabolism , Exosomes/metabolism , Cell Communication , Nucleic Acids/metabolism
13.
Commun Biol ; 5(1): 1358, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36496485

ABSTRACT

Superparamagnetic nanobeads offer several advantages over microbeads for immunocapture of nanocarriers (extracellular vesicles, lipoproteins, and viruses) in a bioassay: high-yield capture, reduction in incubation time, and higher capture capacity. However, nanobeads are difficult to "pull-down" because their superparamagnetic feature requires high nanoscale magnetic field gradients. Here, an electrodeposited track-etched membrane is shown to produce a unique superparamagnetic nano-edge ring with multiple edges around nanopores. With a uniform external magnetic field, the induced monopole and dipole of this nano edge junction combine to produce a 10× higher nanobead trapping force. A dense nanobead suspension can be filtered through the magnetic nanoporous membrane (MNM) at high throughput with a 99% bead capture rate. The yield of specific nanocarriers in heterogeneous media by nanobeads/MNM exceeds 80%. Reproducibility, low loss, and concentration-independent capture rates are also demonstrated. This MNM material hence expands the application of nanobead immunocapture to physiological samples.


Subject(s)
Extracellular Vesicles , Reproducibility of Results , Magnetic Fields , Membranes
15.
iScience ; 25(8): 104653, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35958027

ABSTRACT

The extracellular RNA communication consortium (ERCC) is an NIH-funded program aiming to promote the development of new technologies, resources, and knowledge about exRNAs and their carriers. After Phase 1 (2013-2018), Phase 2 of the program (ERCC2, 2019-2023) aims to fill critical gaps in knowledge and technology to enable rigorous and reproducible methods for separation and characterization of both bulk populations of exRNA carriers and single EVs. ERCC2 investigators are also developing new bioinformatic pipelines to promote data integration through the exRNA atlas database. ERCC2 has established several Working Groups (Resource Sharing, Reagent Development, Data Analysis and Coordination, Technology Development, nomenclature, and Scientific Outreach) to promote collaboration between ERCC2 members and the broader scientific community. We expect that ERCC2's current and future achievements will significantly improve our understanding of exRNA biology and the development of accurate and efficient exRNA-based diagnostic, prognostic, and theranostic biomarker assays.

16.
Mol Cancer ; 21(1): 74, 2022 03 12.
Article in English | MEDLINE | ID: mdl-35279145

ABSTRACT

BACKGROUND: Epithelial-to-mesenchymal transition (EMT) is a process linked to metastasis and drug resistance with non-coding RNAs (ncRNAs) playing pivotal roles. We previously showed that miR-100 and miR-125b, embedded within the third intron of the ncRNA host gene MIR100HG, confer resistance to cetuximab, an anti-epidermal growth factor receptor (EGFR) monoclonal antibody, in colorectal cancer (CRC). However, whether the MIR100HG transcript itself has a role in cetuximab resistance or EMT is unknown. METHODS: The correlation between MIR100HG and EMT was analyzed by curating public CRC data repositories. The biological roles of MIR100HG in EMT, metastasis and cetuximab resistance in CRC were determined both in vitro and in vivo. The expression patterns of MIR100HG, hnRNPA2B1 and TCF7L2 in CRC specimens from patients who progressed on cetuximab and patients with metastatic disease were analyzed by RNAscope and immunohistochemical staining. RESULTS: The expression of MIR100HG was strongly correlated with EMT markers and acted as a positive regulator of EMT. MIR100HG sustained cetuximab resistance and facilitated invasion and metastasis in CRC cells both in vitro and in vivo. hnRNPA2B1 was identified as a binding partner of MIR100HG. Mechanistically, MIR100HG maintained mRNA stability of TCF7L2, a major transcriptional coactivator of the Wnt/ß-catenin signaling, by interacting with hnRNPA2B1. hnRNPA2B1 recognized the N6-methyladenosine (m6A) site of TCF7L2 mRNA in the presence of MIR100HG. TCF7L2, in turn, activated MIR100HG transcription, forming a feed forward regulatory loop. The MIR100HG/hnRNPA2B1/TCF7L2 axis was augmented in specimens from CRC patients who either developed local or distant metastasis or had disease progression that was associated with cetuximab resistance. CONCLUSIONS: MIR100HG and hnRNPA2B1 interact to control the transcriptional activity of Wnt signaling in CRC via regulation of TCF7L2 mRNA stability. Our findings identified MIR100HG as a potent EMT inducer in CRC that may contribute to cetuximab resistance and metastasis by activation of a MIR100HG/hnRNPA2B1/TCF7L2 feedback loop.


Subject(s)
Colorectal Neoplasms , Heterogeneous-Nuclear Ribonucleoprotein Group A-B , MicroRNAs , RNA, Long Noncoding , Cell Line, Tumor , Cell Movement/genetics , Cetuximab/genetics , Cetuximab/metabolism , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , Transcription Factor 7-Like 2 Protein/genetics , Transcription Factor 7-Like 2 Protein/metabolism , Wnt Signaling Pathway/genetics
17.
Nat Cell Biol ; 23(12): 1240-1254, 2021 12.
Article in English | MEDLINE | ID: mdl-34887515

ABSTRACT

Extracellular vesicles and exomere nanoparticles are under intense investigation as sources of clinically relevant cargo. Here we report the discovery of a distinct extracellular nanoparticle, termed supermere. Supermeres are morphologically distinct from exomeres and display a markedly greater uptake in vivo compared with small extracellular vesicles and exomeres. The protein and RNA composition of supermeres differs from small extracellular vesicles and exomeres. Supermeres are highly enriched with cargo involved in multiple cancers (glycolytic enzymes, TGFBI, miR-1246, MET, GPC1 and AGO2), Alzheimer's disease (APP) and cardiovascular disease (ACE2, ACE and PCSK9). The majority of extracellular RNA is associated with supermeres rather than small extracellular vesicles and exomeres. Cancer-derived supermeres increase lactate secretion, transfer cetuximab resistance and decrease hepatic lipids and glycogen in vivo. This study identifies a distinct functional nanoparticle replete with potential circulating biomarkers and therapeutic targets for a host of human diseases.


Subject(s)
Extracellular Vesicles/metabolism , MicroRNAs/metabolism , Nanoparticles/metabolism , Alzheimer Disease/pathology , Angiotensin-Converting Enzyme 2/metabolism , Biological Transport/physiology , Biomarkers/metabolism , COVID-19/pathology , Cardiovascular Diseases/pathology , Cell Communication/physiology , Cell Line, Tumor , HeLa Cells , Humans , Lactic Acid/metabolism , MicroRNAs/genetics , Nanoparticles/classification , Neoplasms/pathology , Tumor Microenvironment
18.
Cell ; 184(26): 6262-6280.e26, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34910928

ABSTRACT

Colorectal cancers (CRCs) arise from precursor polyps whose cellular origins, molecular heterogeneity, and immunogenic potential may reveal diagnostic and therapeutic insights when analyzed at high resolution. We present a single-cell transcriptomic and imaging atlas of the two most common human colorectal polyps, conventional adenomas and serrated polyps, and their resulting CRC counterparts. Integrative analysis of 128 datasets from 62 participants reveals adenomas arise from WNT-driven expansion of stem cells, while serrated polyps derive from differentiated cells through gastric metaplasia. Metaplasia-associated damage is coupled to a cytotoxic immune microenvironment preceding hypermutation, driven partly by antigen-presentation differences associated with tumor cell-differentiation status. Microsatellite unstable CRCs contain distinct non-metaplastic regions where tumor cells acquire stem cell properties and cytotoxic immune cells are depleted. Our multi-omic atlas provides insights into malignant progression of colorectal polyps and their microenvironment, serving as a framework for precision surveillance and prevention of CRC.


Subject(s)
Colonic Polyps/pathology , Colorectal Neoplasms/pathology , Tumor Microenvironment , Adaptive Immunity , Adenoma/genetics , Adenoma/pathology , Adult , Aged , Animals , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Death , Cell Differentiation , Colonic Polyps/genetics , Colonic Polyps/immunology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/immunology , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Genetic Heterogeneity , Humans , Male , Mice , Middle Aged , Mutation/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , RNA-Seq , Reproducibility of Results , Single-Cell Analysis , Tumor Microenvironment/immunology
19.
Heliyon ; 7(12): e08519, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34934837

ABSTRACT

Extracellular vesicles (EVs) are capable of transferring cargo from donor to recipient cells, but precisely how cargo content is regulated for export is mostly unknown. For miRNA cargo, we previously showed that when compared to isogenic colorectal cancer (CRC) cells expressing wild-type KRAS, a distinct subset of miRNAs are differentially enriched in EVs from KRAS mutant active CRC cells, with miR-100 being one of the most enriched. The mechanisms that could explain how miR-100 and other miRNAs are differentially exported into EVs have not been fully elucidated. Here, we tested the effect of N6-methyladenosine (m6A) modification on miRNA export into EVs by depletion of METTL3 and ALKBH5, a writer and eraser of m6A modification, respectively. While the effects of ALKBH5 knockdown were quite modest, decreased levels of METTL3 led to reduced cellular and extracellular levels of a subset of miRNAs that contain consensus sequences for m6A modification. Functional testing of EVs prepared from cells expressing shRNAs against METTL3 showed that they were less capable of conferring colony growth in 3D to wild-type KRAS cells and were also largely incapable of conferring the spread of cetuximab resistance. Our data support a role for METTL3 modification on cellular miRNA levels and export of specific miRNAs.

SELECTION OF CITATIONS
SEARCH DETAIL