Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Aquat Toxicol ; 84(2): 133-41, 2007 Aug 30.
Article in English | MEDLINE | ID: mdl-17640748

ABSTRACT

Previous research showed that the spiny dogfish, Squalus acanthias, is much more sensitive to silver exposure than typical marine teleosts. The aim of the present study was to investigate if spiny dogfish were equally sensitive to copper exposure and whether the toxic mechanisms were the same. We exposed cannulated and non-cannulated spiny dogfish to measured concentrations of Cu (nominally 0, 500, 1000 and 1500 microg L(-1) Cu) for 72-96 h. All Cu exposures induced acidosis and lactate accumulation of either a temporary (500 microg L(-1)) or more persistent nature (1000 and 1500 microg L(-1)). At the two highest Cu concentrations, gill Na(+)/K(+)-ATPase activities were reduced by 45% (1000 microg L(-1)) and 62% (1500 microg L(-1)), and plasma Na(+) and Cl(-) concentrations increased by approximately 50 mM each. At the same time urea excretion doubled and plasma urea dropped by approximately 100 mM. Together with plasma urea, plasma TMAO levels dropped proportionally, indicating that the general impermeability of the gills was compromised. Overall plasma osmolarity did not change. Cu accumulation was limited with significant increases in plasma Cu and elevated gill and kidney Cu burdens at 1000 and 1500 microg L(-1). We conclude that Cu, like Ag, exerts toxic effect on Na(+)/K(+)-ATPase activities in the shark similar to those of teleosts, but there is an additional toxic action on elasmobranch urea retention capacities. With a 96 h LC(50) in the 800-1000 microg L(-1) range, overall sensitivity of spiny dogfish for Cu is, in contrast with its sensitivity to Ag, only slightly lower than in typical marine teleosts.


Subject(s)
Cell Membrane Permeability/drug effects , Copper/toxicity , Gills/drug effects , Squalus acanthias/metabolism , Urea/metabolism , Water Pollutants, Chemical/toxicity , Water-Electrolyte Balance/drug effects , Acidosis/metabolism , Animals , Cell Membrane Permeability/physiology , Chlorides/blood , Copper/metabolism , Gills/metabolism , Lactic Acid/metabolism , Lethal Dose 50 , Osmolar Concentration , Sodium/blood , Sodium-Potassium-Exchanging ATPase/metabolism , Time Factors , Water Pollutants, Chemical/metabolism , Water-Electrolyte Balance/physiology
2.
Arch Environ Contam Toxicol ; 40(4): 469-80, 2001 May.
Article in English | MEDLINE | ID: mdl-11525489

ABSTRACT

A rapid toxicity test based on inhibition of esterase activity in marine and freshwater microalgae (Selenastrum capricornutum, Chlorella sp., Dunaliella tertiolecta, Phaeodactylum tricornutum, Tetraselmis sp., Entomoneis cf. punctulata, Nitzschia cf. paleacea) was developed using flow cytometry. Uptake of fluorescein diacetate (FDA) was optimized for each species by varying the substrate concentration, incubation time, and media pH. Propidium iodide (PI) was utilized to assess membrane integrity. The optimized FDA/PI staining procedure was then used to assess the toxicity of copper in short-term exposures (1-24 h). Esterase activity was a sensitive indicator of copper toxicity in S. capricornutum and E. cf. punctulata. As copper concentrations increased, esterase activity decreased in a concentration-dependent manner. The 3- and 24-h EC50 values (based on mean activity states) were 112 microg Cu L(-1) (95% confidence limits 88-143) and 51 microg Cu L(-1) (95% confidence limits 38-70) for S. capricornutum and 47 microg Cu L(-1) (95% confidence limits 43-51) and 9.1 microg Cu L(-1) (95% confidence limits 7.6-11) for E. cf. punctulata, respectively. This enzyme inhibition endpoint showed similar sensitivity to chronic growth rate inhibition in E. cf. punctulata (48-h and 72-h EC50 values of 17 and 18 microg L(-1), respectively) but was less sensitive compared to growth for S. capricornutum (48-h and 72-h EC50 values of 4.9 and 7.5 microg L(-1), respectively). For the other five species tested, inhibition of FDA fluorescence was relatively insensitive to copper, even at copper concentrations that severely inhibited cell division rate. These short-term bioassays that detect sublethal endpoints may provide a more rapid and cost-effective way of monitoring contaminant impacts in natural waters.


Subject(s)
Copper/adverse effects , Esterases/metabolism , Eukaryota/enzymology , Xenobiotics/adverse effects , Biological Assay/economics , Biological Assay/methods , Cost-Benefit Analysis , Environmental Monitoring , Esterases/drug effects , Eukaryota/drug effects , Flow Cytometry , Fluoresceins/pharmacokinetics , Lethal Dose 50
3.
Environ Toxicol Chem ; 20(1): 160-70, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11351404

ABSTRACT

Copper toxicity to the freshwater algae Selenastrum capricornutum and Chlorella sp. and the marine algae Phaeodactylum tricornutum and Dunaliella tertiolecta was investigated using different parameters measured by flow cytometry: cell division rate inhibition, chlorophyll a fluorescence, cell size (i.e., light-scattering), and enzyme activity. These parameters were assessed regarding their usefulness as alternative endpoints for acute (1-24 h) and chronic (48-72 h) toxicity tests. At copper concentrations of 10 micrograms/L or less, significant inhibition (50%) of the cell division rate was observed after 48- and 72-h exposures for Chlorella sp., S. capricornutum, and P. tricornutum. Bioassays based on increases in algal cell size were also sensitive for Chlorella sp. and P. tricornutum. Copper caused both chlorophyll a fluorescence stimulation (48-h EC50 of 10 +/- 1 micrograms Cu/L for P. tricornutum) and inhibition (48-h EC50 of 14 +/- 6 micrograms Cu/L for S. capricornutum). For acute toxicity over short exposure periods, esterase activity in S. capricornutum using fluorescein diacetate offered a rapid alternative (3-h EC50 of 90 +/- 40 micrograms Cu/L) to growth inhibition tests for monitoring copper toxicity in mine-impacted waters. For all the effect parameters measured, D. tertiolecta was tolerant to copper at concentrations up to its solubility limit in seawater. These results demonstrate that flow cytometry is a useful technique for toxicity testing with microalgae and provide additional information regarding the general mode of action of copper (II) to algal species.


Subject(s)
Copper/toxicity , Eukaryota/metabolism , Water Pollutants, Chemical/toxicity , Biological Assay , Cell Count , Cell Division/drug effects , Chlorophyll/analysis , Chlorophyll/metabolism , Endpoint Determination , Eukaryota/ultrastructure , Flow Cytometry , Fluorescence , Fresh Water , Marine Biology , Membrane Potentials/drug effects
4.
J Bacteriol ; 172(3): 1441-7, 1990 Mar.
Article in English | MEDLINE | ID: mdl-2155202

ABSTRACT

An insertional mutation was made in the nifX gene of Klebsiella pneumoniae. This mutation had little effect on the nitrogenase activity of the strain, as measured by acetylene reduction. However, on the addition of NH4+ or O2 (conditions which block nif protein synthesis by transcriptional and posttranscriptional mechanisms), the NifX- mutant synthesized nitrogenase proteins longer and had more accumulated nifHDKTY mRNA than did the wild-type K. pneumoniae at all time points tested. Conversely, overexpression of the wild-type nifX region blocked nif protein synthesis, protein accumulation, and nifHDKTY mRNA accumulation. These complementary results indicate that a product of the nifX region has a role in the negative regulation of nif regulation in response to NH4+ and O2.


Subject(s)
Genes, Bacterial , Genes, Regulator , Klebsiella pneumoniae/genetics , Nitrogen Fixation/genetics , Acetylene/metabolism , Bacterial Proteins/biosynthesis , Bacterial Proteins/isolation & purification , Blotting, Northern , Blotting, Southern , DNA Transposable Elements , Electrophoresis, Gel, Two-Dimensional , Kinetics , Klebsiella pneumoniae/metabolism , Mutation , Plasmids , Regulatory Sequences, Nucleic Acid , Restriction Mapping
SELECTION OF CITATIONS
SEARCH DETAIL
...