Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.561
Filter
2.
J Dent ; 148: 105214, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950767

ABSTRACT

OBJECTIVES: To evaluate the mechanical properties of root canal dentin treated with sodium hypochlorite (NaOCl) in combination with hydroxyethylidene diphosphonic acid (HEDP) or ethylenediaminetetraacetic acid (EDTA). METHODS: For testing fracture resistance, 45 single-rooted teeth were instrumented and irrigated with NaOCl/HEDP, NaOCl/EDTA, or distilled water. Fifteen untreated teeth served as control. After obturation, specimens from the experimental groups were thermocycled, dynamically-loaded, and then statically-loaded in a universal testing machine until failure. For flexural strength analysis, 15 teeth were instrumented and irrigated with NaOCl/HEDP or NaOCl/EDTA. Root segments were sectioned into dentin bars and tested for flexural strength using a universal testing machine. For microhardness evaluation, 20 teeth were instrumented and irrigated with NaOCl/HEDP or NaOCl/EDTA. Dentin disks from the coronal-third of each root segment were prepared, one before and one after irrigation, for microhardness testing with a Knoop hardness tester. RESULTS: The highest fracture resistance was recorded in the untreated group, and the lowest in the EDTA group. Although the HEDP group had higher fracture resistance than the EDTA group, the distilled water group demonstrated even greater fracture resistance than the HEDP group. Specimens treated with HEDP had significantly higher flexural strength and microhardness values when compared with those treated with EDTA. CONCLUSION: The fracture resistance, flexural strength, and microhardness of root canal dentin were higher when root canals were irrigated with NaOCl/HEDP, when compared with NaOCl/EDTA. CLINICAL SIGNIFICANCE: Irrigating root canals with NaOCl combined with HEDP significantly improves the mechanical integrity of root canal dentin compared to the use of NaOCl with EDTA.

3.
NPJ Biofilms Microbiomes ; 10(1): 56, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003275

ABSTRACT

Dental calculus severely affects the oral health of humans and animal pets. Calculus deposition affects the gingival appearance and causes inflammation. Failure to remove dental calculus from the dentition results in oral diseases such as periodontitis. Apart from adversely affecting oral health, some systemic diseases are closely related to dental calculus deposition. Hence, identifying the mechanisms of dental calculus formation helps protect oral and systemic health. A plethora of biological and physicochemical factors contribute to the physiological equilibrium in the oral cavity. Bacteria are an important part of the equation. Calculus formation commences when the bacterial equilibrium is broken. Bacteria accumulate locally and form biofilms on the tooth surface. The bacteria promote increases in local calcium and phosphorus concentrations, which triggers biomineralization and the development of dental calculus. Current treatments only help to relieve the symptoms caused by calculus deposition. These symptoms are prone to relapse if calculus removal is not under control. There is a need for a treatment regime that combines short-term and long-term goals in addressing calculus formation. The present review introduces the mechanisms of dental calculus formation, influencing factors, and the relationship between dental calculus and several systemic diseases. This is followed by the presentation of a conceptual solution for improving existing treatment strategies and minimizing recurrence.


Subject(s)
Biofilms , Dental Calculus , Dental Calculus/microbiology , Dental Calculus/prevention & control , Humans , Animals , Biofilms/growth & development , Bacteria/classification , Oral Health , Mouth/microbiology , Calcium/metabolism , Phosphorus/metabolism
4.
J Invest Dermatol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901775

ABSTRACT

Methods for describing and reporting the clinical and histologic characteristics of cutaneous tissue samples from patients with hidradenitis suppurativa (HS) are not currently standardized, limiting clinicians' and scientists' ability to uniformly record, report, and communicate about the characteristics of tissue used in translational experiments. A recently published consensus statement outlined morphological definitions of typical HS lesions, but no consensus has been reached regarding clinical characterization and examination of HS tissue samples. In this study, we aimed to establish a protocol for reporting histopathologic and clinical characteristics of HS tissue specimens. This study was conducted from May 2023 to August 2023. Experts in clinical care, dermatopathology, and translational research were recruited, and a modified Delphi technique was used to develop a protocol for histologic reporting and clinical characterization of submitted tissue specimens from patients with HS. A total of 27 experts participated (14 dermatologists, 3 fellowship-trained dermatopathologists, 3 plastic surgeons, 3 general surgeons, and 4 research scientists) in creating and reviewing protocols for the clinical and histopathological examination of HS tissue specimens. The protocols were formatted as a synoptic report and will help to consistently classify specimens in biobanks on the basis of histologic features and more accurately report and select samples used in translational research projects.

5.
Front Immunol ; 15: 1376734, 2024.
Article in English | MEDLINE | ID: mdl-38911854

ABSTRACT

Introduction: Non-typhoidal Salmonella (NTS) generally causes self-limiting gastroenteritis. However, older adults (≥65 years) can experience more severe outcomes from NTS infection. We have previously shown that a live attenuated S. Typhimurium vaccine, CVD 1926 (I77 ΔguaBA ΔclpP ΔpipA ΔhtrA), was immunogenic in adult but not aged mice. Here we describe modification of CVD 1926 through deletion of steD, a Salmonella effector responsible for host immune escape, which we hypothesized would increase immunogenicity in aged mice. Methods: Mel Juso and/or mutuDC cells were infected with S. Typhimurium I77, CVD 1926, and their respective steD mutants, and the MHC-II levels were evaluated. Aged (18-month-old) C57BL/6 mice received two doses of PBS, CVD 1926, or CVD 1926 ΔsteD perorally (109 CFU) and the number of FliC-specific CD4+ T cells were determined. Lastly, aged C57BL/6 mice received three doses of PBS, CVD 1926, or CVD 1926 ΔsteD perorally (109 CFU) and then were challenged perorally with wild-type S. Typhimurium SL1344 (108 CFU). These animals were also evaluated for antibody responses. Results: MHC-II induction was higher in cells treated with steD mutants, compared to their respective parental strains. Compared to PBS-vaccinated mice, CVD 1926 ΔsteD elicited significantly more FliC-specific CD4+ T cells in the Peyer's Patches. There were no significant differences in FliC-specific CD4+ T cells in the Peyer's patches or spleen of CVD 1926- versus PBS-immunized mice. CVD 1926 and CVD 1926 ΔsteD induced similar serum and fecal anti-core and O polysaccharide antibody titers after three doses. After two immunizations, the proportion of seroconverters for CVD 1926 ΔsteD was 83% (10/12) compared to 42% (5/12) for CVD 1926. Compared to PBS-immunized mice, mice immunized with CVD 1926 ΔsteD had significantly lower S. Typhimurium counts in the spleen, cecum, and small intestine upon challenge. In contrast, there were no differences in bacterial loads in the tissues of PBS-vaccinated and CVD 1926-immunized animals. Conclusion: These data suggest that the steD deletion enhanced the immunogenicity of our live attenuated S. Typhimurium vaccine. Deletion of immune evasion genes could be a potential strategy to improve the immunogenicity of live attenuated vaccines in older adults.


Subject(s)
Antibodies, Bacterial , Mice, Inbred C57BL , Salmonella Vaccines , Salmonella typhimurium , Vaccines, Attenuated , Animals , Salmonella Vaccines/immunology , Salmonella Vaccines/administration & dosage , Salmonella Vaccines/genetics , Salmonella typhimurium/immunology , Salmonella typhimurium/genetics , Mice , Vaccines, Attenuated/immunology , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Immune Evasion , Bacterial Proteins/immunology , Bacterial Proteins/genetics , Female , Gene Deletion , Salmonella Infections/immunology , Salmonella Infections/prevention & control , Salmonella Infections/microbiology , Aging/immunology , CD4-Positive T-Lymphocytes/immunology , Immunogenicity, Vaccine
6.
J Imaging Inform Med ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806951

ABSTRACT

This study aimed to create a caries classification scheme based on cone-beam computed tomography (CBCT) and develop two deep learning models to improve caries classification accuracy. A total of 2713 axial slices were obtained from CBCT images of 204 carious teeth. Both classification models were trained and tested using the same pretrained classification networks on the dataset, including ResNet50_vd, MobileNetV3_large_ssld, and ResNet50_vd_ssld. The first model was used directly to classify the original images (direct classification model). The second model incorporated a presegmentation step for interpretation (interpretable classification model). Performance evaluation metrics including accuracy, precision, recall, and F1 score were calculated. The Local Interpretable Model-agnostic Explanations (LIME) method was employed to elucidate the decision-making process of the two models. In addition, a minimum distance between caries and pulp was introduced for determining the treatment strategies for type II carious teeth. The direct model that utilized the ResNet50_vd_ssld network achieved top accuracy, precision, recall, and F1 score of 0.700, 0.786, 0.606, and 0.616, respectively. Conversely, the interpretable model consistently yielded metrics surpassing 0.917, irrespective of the network employed. The LIME algorithm confirmed the interpretability of the classification models by identifying key image features for caries classification. Evaluation of treatment strategies for type II carious teeth revealed a significant negative correlation (p < 0.01) with the minimum distance. These results demonstrated that the CBCT-based caries classification scheme and the two classification models appeared to be acceptable tools for the diagnosis and categorization of dental caries.

9.
J Dent ; 146: 105020, 2024 07.
Article in English | MEDLINE | ID: mdl-38670329

ABSTRACT

OBJECTIVE: To design and evaluate a matrix metalloproteinase 9 (MMP-9)-responsive hydrogel for vital pulp therapy. METHODS: A peptide linker with optimized sensitivity toward MMP-9 was crosslinked with 4-arm poly (ethylene glycol)-norbornene (PEG-NB) by thiol-norbornene photo-polymerization. This resulted in the formation of a hydrogel network in which the peptide IDR-1002 was incorporated. Hydrogel characterization and gelation kinetics were examined with Fourier-transform infrared spectroscopy, scanning electron microscopy, rheological testing, and swelling evaluation. Hydrogel degradation was examined through multiple exposure to pre-activated MMP-9, to simulate flare-ups of dental pulp inflammation. The IDR-1002 released from degraded hydrogels was measured with high-performance liquid chromatography. Effect of IDR-1002 released from hydrogels on one-week-old multispecies oral biofilms was evaluated using confocal laser scanning microscopy. RESULTS: MMP-9-responsive, injectable, and photo-crosslinkable hydrogels were successfully synthesized. When hydrogel degradation and release of IDR-1002 were examined with exposure to pre-activated MMP-9, IDR-1002 release was significantly correlated with elevated levels of MMP-9 (p < 0.05). The effectiveness of IDR-1002 in killing bacteria in multispecies oral biofilms was significantly enhanced when the hydrogels were immersed in 10 nM or 20 nM pre-activated MMP-9, compared to immersion in phosphate-buffered saline (p < 0.05). CONCLUSIONS: The MMP-9-responsive hydrogel is a promising candidate for on-demand delivery of bioactive agent in vital pulp therapy. CLINICAL SIGNIFICANCE: MMP-9 is one of the most important diagnostic and prognostic biomarkers for pulpitis. An MMP-9-responsive hydrogel has potential to be used as an in-situ on-demand release system for the diagnosis and treatment of dental pulp inflammation.


Subject(s)
Hydrogels , Matrix Metalloproteinase 9 , Polyethylene Glycols , Matrix Metalloproteinase 9/metabolism , Hydrogels/chemistry , Humans , Polyethylene Glycols/chemistry , Dental Pulp/drug effects , Biofilms/drug effects , Spectroscopy, Fourier Transform Infrared , Peptides/chemistry , Peptides/pharmacology , Microscopy, Electron, Scanning , Pulpitis , Rheology , Microscopy, Confocal , Cross-Linking Reagents/chemistry
10.
Materials (Basel) ; 17(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38673234

ABSTRACT

Thermal energy storage (TES) plays an important role in industrial applications with intermittent generation of thermal energy. In particular, the implementation of latent heat thermal energy storage (LHTES) technology in industrial thermal processes has shown promising results, significantly reducing sensible heat losses. However, in order to implement this technology, a proper selection of materials is important. In this study, a new multi-criteria phase change material (PCM) selection methodology is presented, which considers relevant factors from an application and material handling point of view, such as hygroscopicity, metal compatibility (corrosion), level hazard, cost, and thermal and atmospheric stability. The methodology starts after setting up the system requirements where the PCM will be used, then a material screening is able to find all possible candidates that are listed with all available properties as listed before. Then, a color map is produced, with a qualitative assessment of material properties drawbacks, hazard level, melting enthalpy, and price. The experimentation starts with a preliminary set of tests on hygroscopicity and one-week corrosion test, which allows disregarding PCMs and selecting a short list of potential PCMs that would need further characterization before the final selection.

11.
J Mol Diagn ; 26(6): 520-529, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522839

ABSTRACT

This study aims to identify RNA biomarkers distinguishing neuromyelitis optica (NMO) from relapsing-remitting multiple sclerosis (RRMS) and explore potential therapeutic applications leveraging machine learning (ML). An ensemble approach was developed using differential gene expression analysis and competitive ML methods, interrogating total RNA-sequencing data sets from peripheral whole blood of treatment-naïve patients with RRMS and NMO and healthy individuals. Pathway analysis of candidate biomarkers informed the biological context of disease, transcription factor activity, and small-molecule therapeutic potential. ML models differentiated between patients with NMO and RRMS, with the performance of certain models exceeding 90% accuracy. RNA biomarkers driving model performance were associated with ribosomal dysfunction and viral infection. Regulatory networks of kinases and transcription factors identified biological associations and identified potential therapeutic targets. Small-molecule candidates capable of reversing perturbed gene expression were uncovered. Mitoxantrone and vorinostat-two identified small molecules with previously reported use in patients with NMO and experimental autoimmune encephalomyelitis-reinforced discovered expression signatures and highlighted the potential to identify new therapeutic candidates. Putative RNA biomarkers were identified that accurately distinguish NMO from RRMS and healthy individuals. The application of multivariate approaches in analysis of RNA-sequencing data further enhances the discovery of unique RNA biomarkers, accelerating the development of new methods for disease detection, monitoring, and therapeutics. Integrating biological understanding further enhances detection of disease-specific signatures and possible therapeutic targets.


Subject(s)
Biomarkers , Machine Learning , Neuromyelitis Optica , Sequence Analysis, RNA , Neuromyelitis Optica/genetics , Neuromyelitis Optica/diagnosis , Neuromyelitis Optica/drug therapy , Humans , Female , Biomarkers/blood , Sequence Analysis, RNA/methods , Male , Mitoxantrone/therapeutic use , Adult , Diagnosis, Differential , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/genetics , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/blood , Multiple Sclerosis, Relapsing-Remitting/diagnosis , Gene Expression Profiling/methods , Multiple Sclerosis/genetics , Multiple Sclerosis/drug therapy , Multiple Sclerosis/diagnosis , Multiple Sclerosis/blood
12.
J Dent ; 144: 104923, 2024 05.
Article in English | MEDLINE | ID: mdl-38461884

ABSTRACT

OBJECTIVES: This paper evaluated the success rates of pulpotomy, compared its efficacy with non-surgical root canal treatment (NSRCT), evaluated different pulpotomy techniques, and analyzed the effectiveness of contemporary bioactive materials in managing irreversible pulpitis in mature permanent teeth. DATA SOURCES: A comprehensive literature search was conducted across multiple databases including PubMed, Web of Science, Scopus, and the Cochrane Library. Search was conducted from the inception of each database to the present, adhering to PRISMA 2020 guidelines. STUDY SELECTION: Studies were selected through a multi-step screening process, focusing on adult populations, randomized controlled trials, and single-arm trials. DATA: Fifteen randomized controlled trials and eight single-arm trials were included. For a follow-up period of more than 24 months, pooled clinical success rate of pulpotomy was 92.9 % (95 %CI;82.1-99.0 %), whereas pooled radiographic success rate was 78.5 % (95 %CI;66.7-88.4 %). Meta-analyses showed that there was no significant difference in success rates between pulpotomy and NSRCT, between full and partial pulpotomy techniques, or between Mineral Trioxide Aggregate pulpotomy and Calcium Enriched Mixture pulpotomy. The results indicated comparable efficacy across these variables. CONCLUSIONS: The study highlights the potential of less invasive treatments. Pulpotomy may be a viable alternative to NSRCT for managing irreversible pulpitis in mature permanent teeth. Limitations such as the low quality of some single-arm trials and the high risk of bias in some randomized controlled trials highlight the need for further research to standardize methodologies and broaden literature inclusion for a more comprehensive understanding of the efficacy of pulpotomy, considering the high success rates reported. Clinical Significance This quantitative systematic review recognizes the potential of full or partial pulpotomy as a viable treatment alternative to root canal therapy for managing irreversible pulpitis in mature permanent teeth. Future studies should aim for standardized protocols to validate these findings and improve patient treatment outcomes.


Subject(s)
Pulpitis , Pulpotomy , Adult , Humans , Aluminum Compounds/therapeutic use , Calcium Compounds/therapeutic use , Dentition, Permanent , Drug Combinations , Pulpitis/therapy , Pulpotomy/methods , Randomized Controlled Trials as Topic , Root Canal Filling Materials/therapeutic use , Root Canal Therapy/methods , Silicates/therapeutic use , Treatment Outcome , Controlled Clinical Trials as Topic
13.
Dent Res J (Isfahan) ; 21: 14, 2024.
Article in English | MEDLINE | ID: mdl-38476717

ABSTRACT

Background: Oral cancer remains one of the most dreadful diseases in developing nations. Currently, there has been a rise in the prevalence of tongue squamous cell carcinoma (SCC), with a poor prognosis. The use of standard treatment approaches against oral cancer patients brings about several side effects. In recent years, nanomedicine has provided a versatile platform for developing new targeted therapeutic modalities. However, safety remains a concern in the synthesis of nanoparticles (NPs). Therefore, the present study aims to synthesize safer phytoconstituent-mediated gold NPs (AuNPs) utilizing leaf extracts of Annona muricata, where the biochemical components of the plant leaf act as the reducing and capping agents in the synthesis of NPs, and to evaluate its anti-cancer activity against SCC. Materials and Methods: In this in vitro experimental study, AuNPs were synthesized through an effective, simple, and ecologically sound green synthesis method. After characterization of these synthesized AuNPs, in vitro assays such as 3-(4, 5-dimethylthiazole2-yl)-2, 5-biphenyl tetrazolium bromide, wound healing, and clonogenic assays were carried out to investigate the anti-cancer potential of green synthesized AuNPs in the human tongue SCC cell line (SCC-15), and the possible mechanism of action was evaluated through gene and protein expression analysis of Bax, Bcl-2, and p53 genes. The results were expressed as mean ± standard deviation using Statistical Package for Social Sciences (SPSS) 20.0 software and Student's t-test was performed for experimental data. P ≤0.05 were considered statistically significant. Results: The in vitro assays demonstrated that the synthesized AuNPs are exhibiting anti-cancer activity by apoptosis of SCC-15 cells in a dose-dependent manner. Further, it also revealed a highly significant decrease in anti-apoptotic Bcl-2 gene expression, whereas pro-apoptotic genes p53 and Bax revealed a highly significant increase, which is statistically significant compared to the control (P < 0.05). Conclusion: Our findings demonstrated that the AuNPs synthesized from A. muricata leaf extract could act as a novel anticancer agent, particularly against SCC, after further scrutiny.

14.
Clin Psychol Rev ; 109: 102415, 2024 04.
Article in English | MEDLINE | ID: mdl-38493675

ABSTRACT

What are the major vulnerabilities in people with social anxiety? What are the most promising directions for translational research pertaining to this condition? The present paper provides an integrative summary of basic and applied translational research on social anxiety, emphasizing vulnerability factors. It is divided into two subsections: intrapersonal and interpersonal. The intrapersonal section synthesizes research relating to (a) self-representations and self-referential processes; (b) emotions and their regulation; and (c) cognitive biases: attention, interpretation and judgment, and memory. The interpersonal section summarizes findings regarding the systems of (a) approach and avoidance, (b) affiliation and social rank, and their implications for interpersonal impairments. Our review suggests that the science of social anxiety and, more generally, psychopathology may be advanced by examining processes and their underlying content within broad psychological systems. Increased interaction between basic and applied researchers to diversify and elaborate different perspectives on social anxiety is necessary for progress.


Subject(s)
Emotions , Fear , Humans , Judgment , Attention , Anxiety/psychology , Interpersonal Relations
15.
J Dent ; 143: 104882, 2024 04.
Article in English | MEDLINE | ID: mdl-38331378

ABSTRACT

OBJECTIVES: This study investigated the relationship between bacterial growth, viability, and extracellular polymeric substances (EPS) formation in biofilms, particularly regarding resistance development. It also examined the impact of chemical factors on the EPS matrix and bacterial proliferation in oral biofilms. METHODS: Three multi-species oral biofilms were incubated in anaerobic conditions. Three strains of Enterococcus faecalis were incubated in aerobic conditions. The incubation periods ranged from 0 h to 7 days for short-term biofilms, and from 3 to 90 days for long-term biofilms. Fluorescent labeling with carboxyfluorescein diacetate succinimidyl ester (CFSE) and flow cytometry were used to track EPS and bacterial growth. Confocal laser scanning microscopy (CLSM) assessed bacterial viability and EPS structure. Biofilms aged 7, 14, and 21 days were treated with 2 % chlorhexidine (CHX) and 1 % sodium hypochlorite (NaOCl) to evaluate their effects on EPS and bacterial proliferation. RESULTS: Short-term biofilms showed rapid bacterial proliferation and a gradual increase in EPS, maintaining stable viability. In the first two weeks, a significant rise in CFSE indicated growing maturity. From 14 to 90 days, EPS and CFSE levels stabilized. Following treatment, CHX significantly reduced bacterial proliferation, while NaOCl decreased EPS volume. CONCLUSIONS: Biofilm development involves a balance between bacterial proliferation and EPS production. The complexity of this process poses challenges in treating biofilm-associated infections, requiring strategies tailored to the biofilm's developmental stage. CLINICAL SIGNIFICANCE: For effective root canal treatment, it is imperative to focus on reducing bacterial proliferation during the early stages of oral infections. In contrast, strategies aimed at minimizing EPS production could be more beneficial for long-term management of these conditions.


Subject(s)
Biofilms , Extracellular Polymeric Substance Matrix , Fluoresceins , Succinimides , Chlorhexidine/pharmacology , Sodium Hypochlorite/pharmacology , Enterococcus faecalis , Microscopy, Confocal , Cell Proliferation , Root Canal Irrigants/pharmacology
16.
Bone Res ; 12(1): 11, 2024 02 22.
Article in English | MEDLINE | ID: mdl-38383487

ABSTRACT

Brain-derived extracellular vesicles participate in interorgan communication after traumatic brain injury by transporting pathogens to initiate secondary injury. Inflammasome-related proteins encapsulated in brain-derived extracellular vesicles can cross the blood‒brain barrier to reach distal tissues. These proteins initiate inflammatory dysfunction, such as neurogenic heterotopic ossification. This recurrent condition is highly debilitating to patients because of its relatively unknown pathogenesis and the lack of effective prophylactic intervention strategies. Accordingly, a rat model of neurogenic heterotopic ossification induced by combined traumatic brain injury and achillotenotomy was developed to address these two issues. Histological examination of the injured tendon revealed the coexistence of ectopic calcification and fibroblast pyroptosis. The relationships among brain-derived extracellular vesicles, fibroblast pyroptosis and ectopic calcification were further investigated in vitro and in vivo. Intravenous injection of the pyroptosis inhibitor Ac-YVAD-cmk reversed the development of neurogenic heterotopic ossification in vivo. The present work highlights the role of brain-derived extracellular vesicles in the pathogenesis of neurogenic heterotopic ossification and offers a potential strategy for preventing neurogenic heterotopic ossification after traumatic brain injury. Brain-derived extracellular vesicles (BEVs) are released after traumatic brain injury. These BEVs contain pathogens and participate in interorgan communication to initiate secondary injury in distal tissues. After achillotenotomy, the phagocytosis of BEVs by fibroblasts induces pyroptosis, which is a highly inflammatory form of lytic programmed cell death, in the injured tendon. Fibroblast pyroptosis leads to an increase in calcium and phosphorus concentrations and creates a microenvironment that promotes osteogenesis. Intravenous injection of the pyroptosis inhibitor Ac-YVAD-cmk suppressed fibroblast pyroptosis and effectively prevented the onset of heterotopic ossification after neuronal injury. The use of a pyroptosis inhibitor represents a potential strategy for the treatment of neurogenic heterotopic ossification.


Subject(s)
Brain Injuries, Traumatic , Extracellular Vesicles , Ossification, Heterotopic , Humans , Rats , Animals , Brain/metabolism , Ossification, Heterotopic/etiology , Brain Injuries, Traumatic/complications , Blood-Brain Barrier/metabolism , Extracellular Vesicles/metabolism
17.
Adv Healthc Mater ; : e2400318, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38408212

ABSTRACT

Drug-resistant bacterial infection of cutaneous wounds causes great harm to the human body. These infections are characterized by a microenvironment with recalcitrant bacterial infections, persistent oxidative stress, imbalance of immune regulation, and suboptimal angiogenesis. Treatment strategies available to date are incapable of handling the healing dynamics of infected wounds. A Schiff base and borate ester cross-linked hydrogel, based on phenylboronic acid-grafted chitosan (CS-PBA), dibenzaldehyde-grafted poly(ethylene glycol), and tannic acid (TA), is fabricated in the present study. Customized phenylboronic acid-modified zinc oxide nanoparticles (ZnO) are embedded in the hydrogel prior to gelation. The CPP@ZnO-P-TA hydrogel effectively eliminates methicillin-resistant Staphylococcus aureus (MRSA) due to the pH-responsive release of Zn2+ and TA. Killing is achieved via membrane damage, adenosine triphosphate reduction, leakage of intracellular components, and hydrolysis of bacterial o-nitrophenyl-ß-d-galactopyranoside. The CPP@ZnO-P-TA hydrogel is capable of scavenging reactive oxygen and nitrogen species, alleviating oxidative stress, and stimulating M2 polarization of macrophages. The released Zn2+ and TA also induce neovascularization via the PI3K/Akt pathway. The CPP@ZnO-P-TA hydrogel improves tissue regeneration in vivo by alleviating inflammatory responses, stimulating angiogenesis, and facilitating collagen deposition. These findings suggest that this versatile hydrogel possesses therapeutic potential for the treatment of MRSA-infected cutaneous wounds.

18.
Adv Mater ; 36(16): e2311659, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38175183

ABSTRACT

Enamel repair is crucial for restoring tooth function and halting dental caries. However, contemporary research often overlooks the retention of organic residues within the repair layer, which hinders the growth of dense crystals and compromises the properties of the repaired enamel. During the maturation of natural enamel, the organic matrix undergoes enzymatic processing to facilitate further crystal growth, resulting in a highly mineralized tissue. Inspired by this process, a biomimetic self-maturation mineralization system is developed, comprising ribonucleic acid-stabilized amorphous calcium phosphate (RNA-ACP) and ribonuclease (RNase). The RNA-ACP induces initial mineralization in the form of epitaxial crystal growth, while the RNase present in saliva automatically triggers a biomimetic self-maturation process. The mechanistic study further indicates that RNA degradation prompts conformational rearrangement of the RNA-ACP, effectively excluding the organic matter introduced earlier. This exclusion process promotes lateral crystal growth, resulting in the generation of denser enamel-like apatite crystals that are devoid of organic residues. This strategy of eliminating organic residues from enamel crystals enhances the mechanical and physiochemical properties of the repaired enamel. The present study introduces a conceptual biomimetic mineralization strategy for effective enamel repair in clinical practice and offers potential insights into the mechanisms of biomineral formation.


Subject(s)
Biomimetics , Calcium Phosphates , Dental Caries , Humans , RNA , Ribonucleases , Dental Enamel
19.
Diabetes Obes Metab ; 26(4): 1366-1375, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38221862

ABSTRACT

AIM: Secondary analyses were conducted from a randomized trial of an adaptive behavioural intervention to assess the relationship between protein intake (g and g/kg) consumed within 4 h before moderate-to-vigorous physical activity (MVPA) bouts and glycaemia during and following MVPA bouts among adolescents with type 1 diabetes (T1D). MATERIALS AND METHODS: Adolescents (n = 112) with T1D, 14.5 (13.8, 15.7) years of age and 36.6% overweight/obese, provided measures of glycaemia using continuous glucose monitoring [percentage of time above range (>180 mg/dl), time in range (70-180 mg/dl), time below range (TBR; <70 mg/dl)], self-reported physical activity (previous day physical activity recalls), and 24 h dietary recall data at baseline and 6 months post-intervention. Mixed effects regression models adjusted for design (randomization assignment, study site), demographic, clinical, anthropometric, dietary, physical activity and timing covariates estimated the association between pre-exercise protein intake on percentage of time above range, time in range and TBR during and following MVPA. RESULTS: Pre-exercise protein intakes of 10-19.9 g and >20 g were associated with an absolute reduction of -4.41% (p = .04) and -4.83% (p = .02) TBR during physical activity compared with those who did not consume protein before MVPA. Similarly, relative protein intakes of 0.125-0.249 g/kg and ≥0.25 g/kg were associated with -5.38% (p = .01) and -4.32% (p = .03) absolute reductions in TBR during physical activity. We did not observe a significant association between protein intake and measures of glycaemia following bouts of MVPA. CONCLUSIONS: Among adolescents with T1D, a dose of ≥10 g or ≥0.125 g/kg of protein within 4 h before MVPA may promote reduced time in hypoglycaemia during, but not following, physical activity.


Subject(s)
Diabetes Mellitus, Type 1 , Hypoglycemia , Humans , Adolescent , Adult , Diabetes Mellitus, Type 1/drug therapy , Blood Glucose Self-Monitoring , Blood Glucose , Obesity , Hypoglycemia/chemically induced , Hypoglycemia/prevention & control
20.
J Mech Behav Biomed Mater ; 152: 106407, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38277911

ABSTRACT

OBJECTIVE: To evaluate the effect of a Nisin-based dentin pretreatment solution on microtensile bond strength, antibacterial activity, and matrix metalloproteinase (MMP) activity of the adhesive interface. MATERIALS AND METHODS: 100 human molars were sectioned to expose dentin. The teeth were assigned to five groups (n = 20), according to the dentin pretreatment: 0.5%, 1.0%, or 1.5% Nisin; 0.12% chlorhexidine (positive control), and no solution (negative control), and divided into 2 subgroups: no aging, and thermomechanical aging. Specimens were etched with 37% H3PO4 for 15 s and submitted to the dentin pretreatment. Then, they were bonded with an adhesive (Adper Single Bond 2) and a resin composite for microtensile bond strength (µTBS) evaluation. Antibacterial activity against Streptococcus mutans was qualitatively examined using an agar diffusion test. Anti-MMP activity within hybrid layers was examined using in-situ zymography. Data were analyzed with two-factor ANOVA and post-hoc Tukey's test (α = 0.050). RESULTS: For µTBS, significant differences were identified for the factors "solutions" (p = 0.002), "aging" (p = 0.017), and interaction of the two factors (p = 0.002). In the absence of aging, higher µTBS was observed for the group 0.5% Nisin. In the presence of aging, all groups showed similar µTBS values. All Nisin concentrations were effective in inhibiting the growth of S. mutans. Endogenous MMP activity was more significantly inhibited using 0.5% and 1.0% Nisin (p < 0.050). CONCLUSION: 0.5% and 1.0% Nisin solutions do not adversely affect resin-dentin bond strength and exhibit a potential bactericidal effect against S. mutans. Both concentrations effectively reduce endogenous gelatinolytic activity within the hybrid layer. CLINICAL RELEVANCE: The use of 0.5% and 1.0% Nisin solutions for dentin pretreatment potentially contributes to preserving the adhesive interface, increasing the longevity of composite restorations.


Subject(s)
Dental Bonding , Nisin , Humans , Nisin/pharmacology , Nisin/analysis , Adhesives/analysis , Dentin/chemistry , Anti-Bacterial Agents/pharmacology , Composite Resins/chemistry , Tensile Strength , Dentin-Bonding Agents/chemistry , Resin Cements/analysis , Materials Testing
SELECTION OF CITATIONS
SEARCH DETAIL
...