Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Toxicol Environ Health A ; : 1-24, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37395093

ABSTRACT

Fish early life stages are well known for their sensitivity to crude oil exposure. However, the effect of crude oil exposure on adults and their gametes during their spawning period is not well studied. Polar cod, a key arctic fish, may be at risk for crude oil exposure during this potentially sensitive life stage. Additionally, this species experiences lower food availability during their spawning season, with unknown combined consequences. In the present study, wild-caught polar cod were exposed to decreasing levels of a water-soluble fraction (WSF) of crude oil or control conditions and fed either at a low or high feed ration to assess the combined effect of both stressors. Samples were taken during late gonadal development, during active spawning (spawning window), and in the post-spawning period. Histology analysis of gonads from fish sampled during the spawning window showed that oil-exposed polar cod were more likely to have spawned compared to controls. Oil-exposed females had 947 differentially regulated hepatic genes, and their eggs had a higher polycyclic aromatic hydrocarbon body burden compared to controls. Feed ration did not consistently affect polar cod's response to oil exposure for the endpoints measured, however, did alone result in decreases in some sperm motility parameters. These results suggest that polar cod's spawning period is a sensitive life event to crude oil exposure, while feed limitation may play a minor role for this supposedly capital breeder. The effects of adult exposure to crude oil on gamete quality and the next generation warrant further investigation.

2.
J Toxicol Environ Health A ; 86(12): 404-419, 2023 06 18.
Article in English | MEDLINE | ID: mdl-37171367

ABSTRACT

The rise in offshore oil and gas operations, maritime shipping, and tourism in northern latitudes enhances the risk of oil spills to sub-Arctic and Arctic coastal environments. Therefore, there is a need to understand the potential adverse effects of petroleum on key species in these areas. Here, we investigated the effects of oil exposure on the early life stages of capelin (Mallotus villosus), an ecologically and commercially important Barents Sea forage fish species that spawns along the coast of Northern Norway. Capelin embryos were exposed to five different concentrations (corresponding to 0.5-19 µg/L total PAHs) of water-soluble fraction (WSF) of crude oil from 6 days post fertilization (dpf) until hatch (25 dpf), and development of larvae in clean seawater was monitored until 52 dpf. None of the investigated endpoints (embryo development, larval length, heart rate, arrhythmia, and larval mortality) showed any effects. Our results suggest that the early life stages of capelin may be more robust to crude oil exposure than similar life stages of other fish species.


Subject(s)
Mallotus Plant , Osmeriformes , Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Animals , Petroleum/toxicity , Water , Osmeriformes/physiology , Larva , Embryonic Development , Water Pollutants, Chemical/toxicity , Petroleum Pollution/adverse effects
3.
Mar Pollut Bull ; 184: 114197, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36208554

ABSTRACT

At present, there are no standardised tests to assess metal leaching during submarine tailings discharge. In this study the influence of variables known to affect metal mobility and availability (dissolved organic carbon (DOC), pH, salinity, temperature, aerated/anoxic conditions) along with variables affected by the discharge conditions (flocculant concentration, suspension) were studied in bench-scale experiments. The leaching tests were developed based on the case of a copper mine by Repparfjorden, northern Norway, which is planned to re-open in 2022. The experiments, which had three week duration, revealed low (<6 %) leaching of metals. Multivariate analysis showed that all variables, apart from DOC, highly influenced leaching and partitioning of at least one metal (Ba, Cr, Cu, and/or Mn). The high quantity of the planned annual discharge of mine tailings to the fjord (1-2 million tonnes) warranted estimation of the leached quantity of metals. Multivariate models, using present-day conditions in the fjord, estimated leaching of up to 124 kg Ba, 154 kg Cu and 2400 kg Mn per year during discharge of tailings. Future changes in the fjord conditions caused by climate change (decreased pH, increased temperature) was predicted by the multivariate models to increase the leaching up to 55 %, by the year 2065. The bench-scale experiments demonstrated the importance of including relevant variables (such as pH, salinity, and temperature) for metal leaching and -partitioning in leaching tests. The results showed that metal leaching during discharge is expected and will increase in the future due to the changed conditions caused by the foreseen climate change, and thereby underline the importance of monitoring metal concentrations in water during operations to determine the fate of metals in the fjord.


Subject(s)
Copper , Metals, Heavy , Copper/analysis , Environmental Monitoring/methods , Climate Change , Metals/analysis , Water/analysis , Metals, Heavy/analysis
4.
Sci Rep ; 11(1): 8410, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33863955

ABSTRACT

Climate change, along with environmental pollution, can act synergistically on an organism to amplify adverse effects of exposure. The Arctic is undergoing profound climatic change and an increase in human activity, resulting in a heightened risk of accidental oil spills. Embryos and larvae of polar cod (Boreogadus saida), a key Arctic forage fish species, were exposed to low levels of crude oil concurrently with a 2.3 °C increase in water temperature. Here we show synergistic adverse effects of increased temperature and crude oil exposure on early life stages documented by an increased prevalence of malformations and mortality in exposed larvae. The combined effects of these stressors were most prevalent in the first feeding larval stages despite embryonic exposure, highlighting potential long-term consequences of exposure for survival, growth, and reproduction. Our findings suggest that a warmer Arctic with greater human activity will adversely impact early life stages of this circumpolar forage fish.


Subject(s)
Embryo, Nonmammalian/cytology , Larva/growth & development , Petroleum Pollution/adverse effects , Petroleum/toxicity , Temperature , Water Pollutants, Chemical/toxicity , Animals , Arctic Regions , Climate Change , Embryo, Nonmammalian/drug effects , Gadiformes , Larva/drug effects , Petroleum/analysis , Petroleum Pollution/analysis , Toxicity Tests , Water Pollutants, Chemical/analysis
5.
Mar Environ Res ; 159: 105007, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32662438

ABSTRACT

This study investigated effects of sea lice pharmaceuticals on egg-bearing deep-water shrimp (Pandalus borealis). Both mortality and sub-lethal effects (behavior, embryo development, and reproductive output) were studied for each of three pharmaceuticals alone and in different sequential combinations. The most severe effect was observed for deltamethrin where 2 h exposure to 330 times diluted treatment dose (alone and in sequential application with hydrogen peroxide and azamethiphos) induced almost 100% mortality within a few days after exposure. Similar effects were not observed for hydrogen peroxide or azamethiphos. However, sequential treatment of hydrogen peroxide and azamethiphos (2 h exposure to each pharmaceutical; 500 times dilution) resulted in >40% mortality during the first week following treatment. No sub-lethal effects or loss of eggs in female shrimp could be related to exposure to the bath treatments. Future studies should investigate potential sub-lethal effects at exposure concentrations close to the no-effect concentration.


Subject(s)
Copepoda , Nitriles , Pandalidae , Pyrethrins , Animals , Hydrogen Peroxide , Nitriles/toxicity , Organothiophosphates/toxicity , Pyrethrins/toxicity
6.
Mar Environ Res ; 147: 62-71, 2019 May.
Article in English | MEDLINE | ID: mdl-31047709

ABSTRACT

Due to a northward shift in off-shore activities, including increased shipping traffic and oil and gas exploration there is a growing focus on the potential effects of oil pollution on Arctic marine ecosystems. Capelin (Mallotus villosus) is a small fish and a member of the smelt family, and is a key species in the marine food chain. Capelin are seasonally abundant in the Northern Atlantic and in coastal Arctic waters, e.g. in western Greenland and in the Barents Sea, where it undertakes aggregated spawning in the intertidal and subtidal zone. To study the possible effects of oil pollution on the physiology and development of early life stages in capelin, freshly fertilised capelin eggs were exposed to a water accommodated fraction of physically (WAF) and chemically (CEWAF) dispersed heavy fuel oil (IFO30) for 72 h. Subsequent mortality, hatching success, larvae malformations, growth and CYP1A/EROD activity was measured over a 4-week period. The nominal exposure concentrations of WAF and CEWAF were between 0.02 and 14.5 mg total hydrocarbon content (THC) L-1 and 0.5-304 mg THC L-1, respectively. Egg mortality correlated significantly with WAF exposure concentration. The proportions of hatched eggs decreased with increasing CEWAF exposure concentration. Further, the percentage of malformed larvae with craniofacial abnormalities, body axis defects, generally under developed larvae, reduced total body length (dwarfs), correlated significantly with exposure concentrations in both CEWAF and WAF treatments. The four types of the predominant malformations were distributed differently in two parallel experiments. At the biochemical level, we observed a significant relationship between CEWAF exposure concentration and CYP1A/EROD activity in newly hatched larvae and this effect persisted for 3 weeks after the 72 h exposure. We conclude that even short-term exposure to both heavy fuel oil WAF and CEWAF, at environmentally relevant THC concentrations following an oil spill, may induce adverse developmental effects on the vulnerable early life stages of capelin. The mechanisms responsible for the observed effects on mortality, growth and embryo development in capelin eggs and embryos following WAF and CEWAF exposure require further studies.


Subject(s)
Fuel Oils , Mallotus Plant , Osmeriformes , Petroleum , Water Pollutants, Chemical , Animals , Arctic Regions , Ecosystem , Fuel Oils/toxicity , Greenland , Osmeriformes/physiology , Water , Water Pollutants, Chemical/toxicity
7.
Ecotoxicol Environ Saf ; 180: 53-62, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31071648

ABSTRACT

The increasing human presence in the Arctic shelf seas, with the expansion of oil and gas industries and maritime shipping, poses a risk for Arctic marine organisms such as the key species polar cod (Boreogadus saida). The impact of dietary crude oil on growth and metabolism of polar cod was investigated in the early spring (March-April) when individuals are expected to be in a vulnerable physiological state with poor energy stores. Adult polar cod were exposed dietarily to three doses of Kobbe crude oil during an eight weeks period and followed by two weeks of depuration. Significant dose-responses in exposure biomarkers (hepatic ethoxyresorufine-O-deethylase [EROD] activity and 1-OH phenanthrene metabolites in bile) indicated that polycyclic aromatic hydrocarbons (PAHs) were bioavailable. Condition indices (i.e. Fulton's condition factor, hepatosomatic index), growth, whole body respiration, and total lipid content in the liver were monitored over the course of the experiment. The majority of females were immature, while a few had spawned during the season and showed low hepatic lipid content during the experiment. In contrast, males were all, except for one immature individual, in a post-spawning stage and had larger hepatic energy stores than females. Most specimens, independent of sex, showed a loss in weight, that was exacerbated by exposure to crude oil and low hepatic liver lipids. Furthermore, females exposed to crude oil showed a significant elevation of oxygen consumption compared to controls, although not dose-dependent. This study highlights the importance of the energy status of individuals for their response to a crude oil exposure.


Subject(s)
Gadiformes/growth & development , Petroleum/toxicity , Water Pollutants, Chemical/toxicity , Animals , Arctic Regions , Bile/chemistry , Biomarkers/metabolism , Cytochrome P-450 CYP1A1/metabolism , Dose-Response Relationship, Drug , Female , Gadiformes/metabolism , Liver/drug effects , Liver/metabolism , Male , Models, Theoretical , Petroleum/metabolism , Water Pollutants, Chemical/metabolism
8.
Environ Toxicol Chem ; 38(7): 1446-1454, 2019 07.
Article in English | MEDLINE | ID: mdl-30901098

ABSTRACT

In Norway, mine tailings waste can be deposited by coastal submarine dispersal. Mine tailings slurry includes fine particles <10 µm with elevated levels of metals (e.g., copper, iron) from residual mineral ore. Prolonged suspension of small particles in the water column may bring them into contact with locally spawned pelagic fish eggs, including Atlantic cod, Gadus morhua. Newly fertilized cod embryos were exposed to suspended mine tailings particles up to 3.2 mg/L in flow-through aquaria for a total of 21 d. Significantly more particles adhered to the surface of the chorion from the high treatment after 11-d exposure, and dissolved Cu concentrations increased in the water (up to 0.36 ± 0.06 µg/L). There was no adverse effect on embryo mortality but an 8% elevation in larval mortality. There were no differences with treatment on timing of hatching, embryo and larva morphometrics, abnormalities, or cardiac activity. There was a treatment-dependent up-regulation of stress marker genes (hspa8, cyp1c1) but no indication of metal-induced activation of metallothionien (mt gene transcription). Transcription markers for DNA and histone methyltransferases did show treatment-related up-regulation, indicative of altered methylation in larvae when developmental methylation patterns are determined, indicating some level of chronic toxicity that may have longer-term effects. Environ Toxicol Chem 2019;38:1446-1454. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Subject(s)
Embryonic Development/drug effects , Gadus morhua/growth & development , Metals/toxicity , Animals , Copper/analysis , Copper/toxicity , DNA-Cytosine Methylases/genetics , DNA-Cytosine Methylases/metabolism , Embryo, Nonmammalian/drug effects , HSC70 Heat-Shock Proteins/genetics , HSC70 Heat-Shock Proteins/metabolism , Histone Methyltransferases/genetics , Histone Methyltransferases/metabolism , Larva/drug effects , Metals/analysis , Mining , Spectrophotometry , Up-Regulation/drug effects
9.
Sci Total Environ ; 656: 921-936, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30625678

ABSTRACT

Climate change and pollution resulting from human activities in the Arctic require reliable monitoring systems in sentinel species. Mytilus spp. are used as sentinel species all around the world. The use of Mytilus spp. in environmental monitoring requires knowledge about natural variations in pollution biomarkers. Seasonal variations in baseline levels of biomarkers were studied over a year in the mussels from both upper and lower littoral zones in Rakkfjorden, Norway, as they underwent their annual reproductive cycle. Spatial variations of these biomarker baseline levels were measured in five mussel populations within a 60-km radius from Rakkfjorden to investigate universality of the results from the specific population of Rakkfjorden at a regional scale. Seasonal variations in biomarker baseline levels were revealed and seemed to be related to the reproductive state of the mussels and the tidal zone. The mussels appeared to be more sensitive to oxidative stress during gametogenesis in autumn and winter, when having lower lysosome membrane stability and lower baseline levels of antioxidant biomarkers. An increase in baseline levels of these biomarkers was reported during spawning in spring, however, it was not possible to reveal whether these changes were due to spawning, or to a higher metabolic activity in mussels in response to elevated water temperature and food abundance. The differences between the tidal zones were reflected in reduced size of the mussels from the upper littoral zone, their late spawning in the season and increased baseline levels of antioxidant biomarkers during the coldest month, indicating a more challenging environment in the upper littoral zone. The spatial study indicated that the biomarker baseline levels measured in Rakkfjorden were no different from the levels measured in the mussels from five other sites and thus, are representative for mussels on a regional scale.


Subject(s)
Biomarkers/metabolism , Environmental Monitoring , Mytilus/physiology , Animals , Arctic Regions , Climate Change , Norway , Reference Values , Seasons , Spatio-Temporal Analysis , Species Specificity
10.
J Environ Manage ; 224: 130-139, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30036807

ABSTRACT

Repparfjorden in northern Norway has been partly designated for submarine mine tailings disposal when the adjacent Cu mine re-opens in 2019. In order to increase sedimentation, the flocculant, Magnafloc10 is planned to be added to the mine tailings prior to discharge into the fjord. This study investigated the feasibility of reducing the Cu concentrations (375 mg/kg) in the mine tailings by applying electrodialytic extraction, including potential optimisation by adding Magnafloc10. In the acidic electrodialytic treatment (pH < 2), Magnafloc10 increased the extraction of Cu from the mine tailings particles from 76 to 86%, and the flocs with adsorbed metals were separated from the tailings solids by the electric field (1 mA/cm2). The electric energy consumption increased with the use of Magnafloc10 (from 17 to 30 kWh/g Cu extracted), due to lower conductivity in the liquid phase and clogging of the membrane by the flocs. In the alkaline electrodialytic treatment (pH > 12), Magnafloc10 reduced the extraction of Cu from 17% to 0.7%, due to the flocs remaining in the tailing slurries. The electric energy consumption per extracted Cu was similar in the acidic and alkaline electrodialytic treatments without the addition of Magnafloc10. In the alkaline electrodialytic treatment, the extraction of other metals was low (<2%), however longer treatment time is necessary to achieve similar Cu extraction as in the acidic electrodialysis. Depending on the target and timescale for treatment, acidic and alkaline electrodialysis can be employed to reduce the Cu concentration in the mine tailings thereby reducing the metal toxicity potential.


Subject(s)
Copper/chemistry , Water Pollutants, Chemical/chemistry , Copper/isolation & purification , Estuaries , Industrial Waste , Metals , Mining , Norway , Water Pollutants, Chemical/isolation & purification , Water Purification
11.
Environ Sci Pollut Res Int ; 25(33): 32901-32912, 2018 Nov.
Article in English | MEDLINE | ID: mdl-28550634

ABSTRACT

Mining of Cu took place in Kvalsund in the Arctic part of Norway in the 1970s, and mine tailings were discharged to the inner part of the fjord, Repparfjorden. Metal speciation analysis was used to assess the historical dispersion of metals as well as their potential bioavailability from the area of the mine tailing disposal. It was revealed that the dispersion of Ba, Cr, Ni, Pb and Zn from the mine tailings has been limited. Dispersion of Cu to the outer fjord has, however, occurred; the amounts released and dispersed from the mine tailing disposal area quantified to be 2.5-10 t, less than 5% of Cu in the original mine tailings. An estimated 80-390 t of Cu still remains in the disposal area from the surface to a depth of 16 cm. Metal partitioning showed that 56-95% of the Cu is bound in the potential bioavailable fractions (exchangeable, reducible and oxidisable) of the sediments, totalling approximately 70-340 t, with potential for continuous release to the pore water and re-precipitation in over- and underlying sediments. Surface sediments in the deposit area were affected by elevated Cu concentrations just above the probable effect level according to the Norwegian sediment quality criteria, with 50-80% Cu bound in the exchangeable, reducible and oxidisable fractions, potentially available for release to the water column and/or for uptake in benthic organisms.


Subject(s)
Copper/pharmacokinetics , Metals/analysis , Water Pollutants, Chemical/analysis , Biological Availability , Copper/analysis , Environmental Monitoring , Estuaries , Geologic Sediments/analysis , Metals/pharmacokinetics , Mining , Norway
12.
Aquat Toxicol ; 187: 64-71, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28384517

ABSTRACT

The populations of Arctic charr (Salvelinus alpinus) residing in Lake Ellasjøen at Bjørnøya Island in the Norwegian Arctic (74° 30'N, 19° 00'E) possess substantially higher levels of organohalogenated compounds (strongly dominated by polychlorinated biphenyls, PCBs) than conspecifics residing in other, proximate lakes on the island. In the present study we sampled large (<400g), immature charr from Lake Ellasjøen (high PCB levels) and Lake Laksvatn (reference lake, low PCB levels) by hook and line for an immediate blood sampling, and blood and tissue sampling after a 1h confinement stressor. This was done in order to investigate possible effects of pollutants on an acute stress performance in a high-latitude fish species by comparing muscle PCB levels, hepatic cytochrome P4501A (CYP1A) biomarker activation and functioning of the hypothalamus-pituitary-interrenal (HPI) axis between these two populations of Arctic charr. As expected sum PCB muscle levels were 8-fold higher on a wet weigh basis, and 19-fold higher on a lipid weight basis, in charr from Ellasjøen than in charr from Laksvatn. This was accompanied by a 3.5-fold higher liver cyp1a mRNA abundance in the Ellasjøen charr compared to Laksvatn charr. Brain transcript levels encoding glucocorticoid receptor 1 and 2 (GR2) and corticotropin-releasing factor, and pituitary transcript levels encoding GR2 and proopiomelanocortin A1 and A2 were higher in Ellasjøen charr than in Laksvatn charr, while interrenal transcript levels encoding melanocortin 2 receptor and steroidogenic acute regulatory protein were lower. There were no differences in plasma cortisol concentration between the two charr populations immediately after capture and one hour after confinement. The strong biomarker response to OHCs and altered mRNA abundances of key genes related to HPI axis functioning in the Ellasjøen charr suggest endocrine disruptive effects of OHCs in this charr population. Possible ecological implications are not known, but it cannot be excluded that a slower growth rate in Ellasjøen charr compared to Laksvatn charr due to an increased metabolic demand associated with the activation of xenobiotic defense and detoxification systems may have contributed to the lower body mass of Ellasjøen charr compared to Laksvatn charr.


Subject(s)
Endocrine Disruptors/toxicity , Hypothalamo-Hypophyseal System/drug effects , Kidney/drug effects , Polychlorinated Biphenyls/toxicity , Trout/blood , Water Pollutants, Chemical/toxicity , Animals , Arctic Regions , Biomarkers/blood , Corticotropin-Releasing Hormone/blood , Endocrine Disruptors/pharmacokinetics , Environmental Monitoring , Hydrocortisone/blood , Hypothalamo-Hypophyseal System/metabolism , Kidney/metabolism , Lakes/chemistry , Norway , Polychlorinated Biphenyls/pharmacokinetics , Tissue Distribution , Trout/metabolism , Trout/physiology , Water Pollutants, Chemical/pharmacokinetics
14.
Aquat Toxicol ; 180: 196-208, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27723571

ABSTRACT

Increasing human activities in the Arctic raise the risk of petroleum pollution, thus posing an elevated risk for Arctic organisms to be chronically exposed to petroleum compounds. The endocrine disrupting properties of some of these compounds (i.e. polycyclic aromatic hydrocarbons [PAHs]) present in crude oil may have negative effects on the long and energy intensive reproductive development of polar cod (Boreogadus saida), an Arctic keystone species. In the present study, selected reproductive parameters were examined in feral polar cod exposed to crude oil via a natural diet (0.11, 0.57 and 1.14µg crude oil/g fish/day [corresponding to low, medium and high treatments, respectively]) for 31 weeks prior to spawning. Fish maturing in the current reproductive period made up 92% of the experimental population while 5% were immature and 3% were identified as resting fish. Phase I metabolism of PAHs, indicated by ethoxyresorufin-O-deethylase (EROD) activity, showed a dose-dependent increase in high and medium crude oil treatments at week 6 and 22, respectively. Decreasing EROD activity and increasing PAH bile metabolite concentrations over the experimental period may be explained by reproductive maturity stage. Significant alterations in sperm motility were observed in crude oil exposed males compared to the controls. The investigated somatic indices (gonad and hepatic), germ cell development and plasma steroid levels (estradiol-17ß [females], testosterone [males and females] and 11-ketotestosterone [males]) were not significantly altered by chronic dietary exposure to crude oil. The environmentally realistic doses polar cod were chronically exposed to in this study were likely not high enough to induce adverse effects in this ecologically important fish species. This study elucidated many baseline aspects of polar cod reproductive physiology and emphasized the influence of maturation state on biomarkers of PAH biotransformation (EROD and PAH bile metabolites).


Subject(s)
Gadiformes/metabolism , Petroleum/analysis , Water Pollutants, Chemical/toxicity , Animals , Arctic Regions , Bile/chemistry , Bile/drug effects , Bile/metabolism , Biomarkers/blood , Cytochrome P-450 CYP1A1/metabolism , Environmental Exposure , Estradiol/blood , Female , Gonads/pathology , Male , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/metabolism , Polycyclic Aromatic Hydrocarbons/toxicity , Sperm Motility/drug effects , Testosterone/blood
15.
Environ Pollut ; 218: 605-614, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27506648

ABSTRACT

Increasing anthropogenic activities in the Arctic represent an enhanced threat for oil pollution in a marine environment that is already at risk from climate warming. In particular, this applies to species with free-living pelagic larvae that aggregate in surface waters and under the sea ice where hydrocarbons are likely to remain for extended periods of time due to low temperatures. We exposed the positively buoyant eggs of polar cod (Boreogadus saida), an arctic keystone species, to realistic concentrations of a crude oil water-soluble fraction (WSF), mimicking exposure of eggs aggregating under the ice to oil WSF leaking from brine channels following encapsulation in ice. Total hydrocarbon and polycyclic aromatic hydrocarbon levels were in the ng/L range, with most exposure concentrations below the limits of detection throughout the experiment for all treatments. The proportion of viable, free-swimming larvae decreased significantly with dose and showed increases in the incidence and severity of spine curvature, yolk sac alterations and a reduction in spine length. These effects are expected to compromise the motility, feeding capacity, and predator avoidance during critical early life stages for this important species. Our results imply that the viability and fitness of polar cod early life stages is significantly reduced when exposed to extremely low and environmentally realistic levels of aqueous hydrocarbons, which may have important implications for arctic food web dynamics and ecosystem functioning.


Subject(s)
Gadiformes , Hydrocarbons/analysis , Petroleum Pollution/analysis , Petroleum/analysis , Water Pollutants, Chemical/analysis , Animals , Arctic Regions , Cold Temperature , Ecosystem , Food Chain , Gadiformes/growth & development , Larva , Ovum , Polycyclic Aromatic Hydrocarbons/analysis , Sensitivity and Specificity , Water
16.
Mar Environ Res ; 119: 126-35, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27266989

ABSTRACT

Shipping activities are expected to increase in the Arctic Seas. Today, the majority of vessels are using marine diesel oil (MDO) as propulsion fuel. However, there is a general lack of knowledge of how cold-water marine species respond to acute exposures to MDO. Arctic red king crabs (Paralithodes camtschaticus) were exposed to mechanically dispersed MDO in a flow-through exposure system for one week followed by three weeks of recovery. Observations of increased movements in exposed crabs were interpreted as avoidance behaviour. Further, glutathione peroxidase activity increased in high exposed crab, the catalase activity showed an insignificant increase with exposure, while no differences between groups were observed for lipid peroxidation and acetylcholinesterase activity. After three weeks of recovery in clean seawater, polycyclic aromatic hydrocarbons concentrations in the crabs were significantly reduced, with no specific biomarker responses in exposed groups compared to the control. The results suggest that effects from instantaneous MDO spill only will have short-term effects on the red king crab.


Subject(s)
Anomura/physiology , Gasoline/toxicity , Petroleum Pollution , Toxicity Tests , Water Pollutants, Chemical/toxicity , Animals , Arctic Regions , Biomarkers/metabolism , Environmental Monitoring , Polycyclic Aromatic Hydrocarbons , Seawater
17.
Ecotoxicol Environ Saf ; 127: 95-107, 2016 May.
Article in English | MEDLINE | ID: mdl-26809079

ABSTRACT

This study aimed to simulate conditions in which dispersant (Dasic NS) might be used to combat an oil spill in coastal sub-Arctic water of limited depth and water exchange in order to produce input data for Net Environmental Benefit Analysis (NEBA) of Arctic and sub-Arctic coastal areas. Concentration dependent differences in acute responses and long-term effects of a 48h acute exposure to dispersed oil, with and without the application of a chemical dispersant, were assessed on the Arctic filter feeding bivalve Chlamys islandica. Icelandic scallops were exposed for 48h to a range of spiked concentrations of mechanically and chemically dispersed oil. Short-term effects were assessed in terms of lysosomal membrane stability, superoxide dismutase, catalase, gluthatione S-transferases, glutathione peroxidases, glutathione reductase, glutathione, total oxyradical scavenging capacity, lipid peroxidation and peroxisomal proliferation. Post-exposure survival, growth and reproductive investment were followed for 2 months to evaluate any long-term consequence. Generally, similar effects were observed in scallops exposed to mechanically and chemically dispersed oil. Limited short-term effects were observed after 48h, suggesting that a different timing would be required for measuring the possible onset of such effects. There was a concentration dependent increase in cumulative post-exposure mortality, but long-term effects on gonadosomatic index, somatic growth/condition factor did not differ among treatments.


Subject(s)
Pectinidae/drug effects , Petroleum Pollution/adverse effects , Petroleum/toxicity , Water Pollutants, Chemical/toxicity , Analysis of Variance , Animals , Antioxidants/metabolism , Arctic Regions , Cell Membrane/drug effects , Glutathione/metabolism , Lipid Peroxidation/drug effects , Lysosomes/drug effects , Models, Biological , Oxidative Stress/drug effects , Pectinidae/enzymology , Pectinidae/growth & development , Surface-Active Agents/pharmacology
18.
Aquat Toxicol ; 165: 9-18, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26005920

ABSTRACT

Petroleum-related activities in the Arctic have raised concerns about the adverse effects of potential oil spill on the environment and living organisms. Polar cod plays a key role in the Arctic marine ecosystem and is an important species for monitoring oil pollution in this region. We examined potential interactions of oil pollution and global warming by analysing liver transcriptome changes in polar cod exposed to crude oil at elevated temperature. Adult males and females were kept at high (11°C) or normal (4°C) temperature for 5 days before exposure to mechanically dispersed crude oil for 2 days followed by recovery in clean sea water for 11 days at the two temperatures. Genome-wide microarray analysis of liver samples revealed numerous differentially expressed genes induced by uptake of oil as confirmed by increased levels of bile polycyclic aromatic hydrocarbon (PAH) metabolites. The hepatic response included genes playing important roles in xenobiotic detoxification and closely related biochemical processes, but also of importance for protein stress response, cell repair and immunity. Though magnitude of transcriptome responses was similar at both temperatures, the upregulated expression of cyp1a1 and several chaperone genes was much stronger at 11°C. Most gene expression changes returned to basal levels after recovery. The microarray results were validated by qPCR measurement of eleven selected genes representing both known and novel biomarkers to assess exposure to anthropogenic threats on polar cod. Strong upregulation of the gene encoding fibroblast growth factor 7 is proposed to protect the liver of polar fish with aglomerular kidneys from the toxic effect of accumulated biliary compounds. The highly altered liver transcriptome patterns after acute oil exposure and recovery suggests rapid responses in polar cod to oil pollutants and the ability to cope with toxicity in relatively short time.


Subject(s)
Environmental Exposure , Gadiformes/physiology , Hot Temperature , Petroleum/toxicity , Transcriptome/drug effects , Water Pollutants, Chemical/toxicity , Animals , Arctic Regions , Bile/chemistry , Biomarkers/metabolism , Cytochrome P-450 CYP1A1/genetics , Female , Liver/drug effects , Male , Petroleum Pollution , Seawater/chemistry
19.
Mar Environ Res ; 105: 8-19, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25637877

ABSTRACT

Concentration dependent differences in acute and long-term effects of a 48 h exposure to mechanically or chemically dispersed crude oil were assessed on juvenile lumpsucker (Cyclopterus lumpus). Acute or post-exposure mortality was only observed at oil concentrations representing higher concentrations than reported after real oil spills. Acute mortality was more apparent in chemically than mechanically dispersed oil treatments whereas comparable EC50s were observed for narcosis. There was a positive correlation between EROD activity and muscle PAH concentration for the lower oil concentrations whereas higher concentrations inhibited the enzyme activity. The incidence of gill tissue lesions was low with no difference between dispersion methods or oil concentrations. A concentration dependent decrease in swimming- and feeding behavior and in SGR was observed at the start of the post-exposure period, but with no differences between corresponding oil treatments. Three weeks post-exposure, fish from all treatments showed as high SGR as the control fish.


Subject(s)
Gills/drug effects , Liver/drug effects , Motor Activity/drug effects , Perciformes/physiology , Petroleum/toxicity , Water Pollutants, Chemical/toxicity , Animals , Cytochrome P-450 CYP1A1/metabolism , Enzyme Activation/drug effects , Feeding Behavior/drug effects , Petroleum Pollution , Stupor/chemically induced , Surface-Active Agents/toxicity
20.
Aquat Toxicol ; 108: 42-52, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22037118

ABSTRACT

Due to a northward shift in oil and gas activities, there is an increasing need to understand the potential anthropogenic impacts of oil-related compounds on sub-Arctic and Arctic organisms, particularly those in coastal habitats. Capelin (Mallotus villosus), a key fish species in the Barents Sea ecosystem, undertakes aggregated spawning at both intertidal and subtidal coastal localities in northern Norway. To investigate the sensitivity of capelin embryos to oil compounds, newly fertilized capelin eggs were collected from a spawning beach and exposed until hatch (32 days) to either the water soluble fraction of crude oil or the single PAH compound, pyrene. Threshold levels for egg mortality, development and hatching success were determined. Concentrations of 40 µg/L crude oil (∑26 PAHs) and 55 µg/L pyrene significantly increased embryonic mortality rates and decreased hatching success, compared with controls, indicating that a potential oil spill in the vicinity of capelin spawning grounds may cause significant impacts. No significant incidence of adverse effects such as yolk sac oedema, pericardia oedema, haemorrhages, craniofacial abnormalities, premature hatch or inhibited growth was observed. Histological studies of hatched larvae did not reveal specific sublethal effects in tissues and organs. Developmental delays and subsequent embryo death were noticed at the period of eye pigmentation in affected groups. Early life-history stages of capelin are sensitive indicators of PAH impacts, but the mechanisms responsible for the toxic effects require further investigation.


Subject(s)
Osmeriformes/physiology , Petroleum/toxicity , Pyrenes/toxicity , Water Pollutants, Chemical/toxicity , Animals , Embryo, Nonmammalian/drug effects , Lethal Dose 50 , Osmeriformes/embryology , Petroleum/analysis , Pyrenes/analysis , Seawater/chemistry , Survival Analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...