Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37645727

ABSTRACT

Lysine acylation can direct protein function, localization, and interactions. Sirtuins deacylate lysine towards maintaining cellular homeostasis, and their aberrant expression contributes to the pathogenesis of multiple pathological conditions, including cancer. Measuring sirtuins' activity is essential to exploring their potential as therapeutic targets, but accurate quantification is challenging. We developed 'SIRTify', a high-sensitivity assay for measuring sirtuin activity in vitro and in vivo. SIRTify is based on a split-version of the NanoLuc® luciferase consisting of a truncated, catalytically inactive N-terminal moiety (LgBiT) that complements with a high-affinity C-terminal peptide (p86) to form active luciferase. Acylation of two lysines within p86 disrupts binding to LgBiT and abates luminescence. Deacylation by sirtuins reestablishes p86 and restores binding, generating a luminescence signal proportional to sirtuin activity. Measurements accurately reflect reported sirtuin specificity for lysine acylations and confirm the effects of sirtuin modulators. SIRTify effectively quantifies lysine deacylation dynamics and may be adaptable to monitoring additional post-translational modifications.

2.
Blood ; 139(5): 761-778, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34780648

ABSTRACT

The chronic phase of chronic myeloid leukemia (CP-CML) is characterized by the excessive production of maturating myeloid cells. As CML stem/progenitor cells (LSPCs) are poised to cycle and differentiate, LSPCs must balance conservation and differentiation to avoid exhaustion, similar to normal hematopoiesis under stress. Since BCR-ABL1 tyrosine kinase inhibitors (TKIs) eliminate differentiating cells but spare BCR-ABL1-independent LSPCs, understanding the mechanisms that regulate LSPC differentiation may inform strategies to eliminate LSPCs. Upon performing a meta-analysis of published CML transcriptomes, we discovered that low expression of the MS4A3 transmembrane protein is a universal characteristic of LSPC quiescence, BCR-ABL1 independence, and transformation to blast phase (BP). Several mechanisms are involved in suppressing MS4A3, including aberrant methylation and a MECOM-C/EBPε axis. Contrary to previous reports, we find that MS4A3 does not function as a G1/S phase inhibitor but promotes endocytosis of common ß-chain (ßc) cytokine receptors upon GM-CSF/IL-3 stimulation, enhancing downstream signaling and cellular differentiation. This suggests that LSPCs downregulate MS4A3 to evade ßc cytokine-induced differentiation and maintain a more primitive, TKI-insensitive state. Accordingly, knockdown (KD) or deletion of MS4A3/Ms4a3 promotes TKI resistance and survival of CML cells ex vivo and enhances leukemogenesis in vivo, while targeted delivery of exogenous MS4A3 protein promotes differentiation. These data support a model in which MS4A3 governs response to differentiating myeloid cytokines, providing a unifying mechanism for the differentiation block characteristic of CML quiescence and BP-CML. Promoting MS4A3 reexpression or delivery of ectopic MS4A3 may help eliminate LSPCs in vivo.


Subject(s)
Cell Cycle Proteins/metabolism , Endocytosis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Membrane Proteins/metabolism , Receptors, Cytokine/metabolism , Animals , Cell Cycle Proteins/genetics , Down-Regulation , Gene Expression Regulation, Leukemic , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Membrane Proteins/genetics , Mice , Transcriptome , Tumor Cells, Cultured
3.
Blood Cancer Discov ; 2(3): 266-287, 2021 05.
Article in English | MEDLINE | ID: mdl-34027418

ABSTRACT

We discovered that the survival and growth of many primary acute myeloid leukemia (AML) samples and cell lines, but not normal CD34+ cells, are dependent on SIRT5, a lysine deacylase implicated in regulating multiple metabolic pathways. Dependence on SIRT5 is genotype-agnostic and extends to RAS- and p53-mutated AML. Results were comparable between SIRT5 knockdown and SIRT5 inhibition using NRD167, a potent and selective SIRT5 inhibitor. Apoptosis induced by SIRT5 disruption is preceded by reductions in oxidative phosphorylation and glutamine utilization, and an increase in mitochondrial superoxide that is attenuated by ectopic superoxide dismutase 2. These data indicate that SIRT5 controls and coordinates several key metabolic pathways in AML and implicate SIRT5 as a vulnerability in AML.


Subject(s)
Leukemia, Myeloid, Acute , Sirtuins , Apoptosis , Humans , Leukemia, Myeloid, Acute/drug therapy , Lysine/metabolism , Mitochondria/genetics , Oxidative Phosphorylation , Sirtuins/genetics
4.
Blood ; 134(26): 2388-2398, 2019 12 26.
Article in English | MEDLINE | ID: mdl-31697804

ABSTRACT

The V617F mutation in the JH2 domain of Janus kinase 2 (JAK2) is an oncogenic driver in several myeloproliferative neoplasms (MPNs), including essential thrombocythemia, myelofibrosis, and polycythemia vera (PV). Other mutations in JAK2 have been identified in MPNs, most notably exon 12 mutations in PV. Here, we describe a novel recurrent mutation characterized by a common 4-amino-acid deletion and variable 1-amino-acid insertion (Leu583-Ala586DelInsSer/Gln/Pro) within the JH2 domain of JAK2. All 4 affected patients had eosinophilia, and both patients with Leu583-Ala586DelInsSer fulfilled diagnostic criteria of both PV and chronic eosinophilic leukemia (CEL). Computational and functional studies revealed that Leu583-Ala586DelInsSer (herein referred to as JAK2ex13InDel) deregulates JAK2 through a mechanism similar to JAK2V617F, activates signal transducer and activator of transcription 5 and extracellular signal-regulated kinase, and transforms parental Ba/F3 cells to growth factor independence. In contrast to JAK2V617F, JAK2ex13InDel does not require an exogenous homodimeric type 1 cytokine receptor to transform Ba/F3 cells and is capable of activating ß common chain family cytokine receptor (interleukin-3 receptor [IL-3R], IL-5R, and granulocyte-macrophage colony stimulating factor receptor) signaling in the absence of ligand, with the maximum effect observed for IL-5R, consistent with the clinical phenotype of eosinophilia. Recognizing this new PV/CEL-overlap MPN has significant clinical implications, as both PV and CEL patients are at high risk for thrombosis, and concomitant cytoreduction of red cells, neutrophils, and eosinophils may be required for prevention of thromboembolic events. Targeted next-generation sequencing for genes recurrently mutated in myeloid malignancies in patients with unexplained eosinophilia may reveal additional cases of Leu583-Ala586DelInsSer/Gln/Pro, allowing for complete characterization of this unique MPN.


Subject(s)
B-Lymphocytes/pathology , Cell Transformation, Neoplastic/pathology , Hypereosinophilic Syndrome/pathology , INDEL Mutation , Janus Kinase 2/genetics , Leukemia/pathology , Polycythemia Vera/pathology , Adult , Aged , Aged, 80 and over , Amino Acid Sequence , Animals , B-Lymphocytes/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cells, Cultured , Clonal Evolution , Female , Humans , Hypereosinophilic Syndrome/genetics , Hypereosinophilic Syndrome/metabolism , Janus Kinase 2/metabolism , Leukemia/genetics , Leukemia/metabolism , Male , Mice , Oncogenes , Polycythemia Vera/genetics , Polycythemia Vera/metabolism
5.
Blood Adv ; 3(20): 2949-2961, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31648319

ABSTRACT

Chronic myelomonocytic leukemia (CMML) is an aggressive myeloid neoplasm of older individuals characterized by persistent monocytosis. Somatic mutations in CMML are heterogeneous and only partially explain the variability in clinical outcomes. Recent data suggest that cardiovascular morbidity is increased in CMML and contributes to reduced survival. Clonal hematopoiesis of indeterminate potential (CHIP), the presence of mutated blood cells in hematologically normal individuals, is a precursor of age-related myeloid neoplasms and associated with increased cardiovascular risk. To isolate CMML-specific alterations from those related to aging, we performed RNA sequencing and DNA methylation profiling on purified monocytes from CMML patients and from age-matched (old) and young healthy controls. We found that the transcriptional signature of CMML monocytes is highly proinflammatory, with upregulation of multiple inflammatory pathways, including tumor necrosis factor and interleukin (IL)-6 and -17 signaling, whereas age per se does not significantly contribute to this pattern. We observed no consistent correlations between aberrant gene expression and CpG island methylation, suggesting that proinflammatory signaling in CMML monocytes is governed by multiple and complex regulatory mechanisms. We propose that proinflammatory monocytes contribute to cardiovascular morbidity in CMML patients and promote progression by selection of mutated cell clones. Our data raise questions of whether asymptomatic patients with CMML benefit from monocyte-depleting or anti-inflammatory therapies.


Subject(s)
Leukemia, Myelomonocytic, Chronic/genetics , Leukemia, Myelomonocytic, Chronic/pathology , Monocytes/metabolism , Monocytes/pathology , Transcriptome , Adult , Age Factors , Aged , Aged, 80 and over , Biomarkers , Case-Control Studies , Computational Biology/methods , DNA Methylation , Female , Gene Expression Profiling , Humans , Inflammation Mediators , Male , Middle Aged , Mutation , Young Adult
6.
Clin Cancer Res ; 21(23): 5253-63, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-25922429

ABSTRACT

PURPOSE: We aimed to identify gene expression signatures associated with angiogenesis and hypoxia pathways with predictive value for treatment response to bevacizumab/erlotinib (BE) of nonsquamous advanced non-small cell lung cancer (NSCLC) patients. EXPERIMENTAL DESIGN: Whole-genome gene expression profiling was performed on 42 biopsy samples (from SAKK 19/05 trial) using Affymetrix exon arrays, and associations with the following endpoints: time-to-progression (TTP) under therapy, tumor-shrinkage (TS), and overall survival (OS) were investigated. Next, we performed gene set enrichment analyses using genes associated with the angiogenic process and hypoxia response to evaluate their predictive value for patients' outcome. RESULTS: Our analysis revealed that both the angiogenic and hypoxia response signatures were enriched within the genes predictive of BE response, TS, and OS. Higher gene expression levels (GEL) of the 10-gene angiogenesis-associated signature and lower levels of the 10-gene hypoxia response signature predicted improved TTP under BE, 7.1 months versus 2.1 months for low versus high-risk patients (P = 0.005), and median TTP 6.9 months versus 2.9 months (P = 0.016), respectively. The hypoxia response signature associated with higher TS at 12 weeks and improved OS (17.8 months vs. 9.9 months for low vs. high-risk patients, P = 0.001). CONCLUSIONS: We were able to identify gene expression signatures derived from the angiogenesis and hypoxia response pathways with predictive value for clinical outcome in advanced nonsquamous NSCLC patients. This could lead to the identification of clinically relevant biomarkers, which will allow for selecting the subset of patients who benefit from the treatment and predict drug response.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Transcriptome , Bevacizumab/administration & dosage , Biomarkers, Tumor , Biopsy , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Cluster Analysis , Erlotinib Hydrochloride/administration & dosage , Female , Gene Expression Profiling , Humans , Hypoxia/genetics , Kaplan-Meier Estimate , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Male , Neoplasm Staging , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/genetics , Prognosis , Reproducibility of Results , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...