Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1895): 20220411, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38104600

ABSTRACT

How to account for the power that art holds over us? Why do artworks touch us deeply, consoling, transforming or invigorating us in the process? In this paper, we argue that an answer to this question might emerge from a fecund framework in cognitive science known as predictive processing (a.k.a. active inference). We unpack how this approach connects sense-making and aesthetic experiences through the idea of an 'epistemic arc', consisting of three parts (curiosity, epistemic action and aha experiences), which we cast as aspects of active inference. We then show how epistemic arcs are built and sustained by artworks to provide us with those satisfying experiences that we tend to call 'aesthetic'. Next, we defuse two key objections to this approach; namely, that it places undue emphasis on the cognitive component of our aesthetic encounters-at the expense of affective aspects-and on closure and uncertainty minimization (order)-at the expense of openness and lingering uncertainty (change). We show that the approach offers crucial resources to account for the open-ended, free and playful behaviour inherent in aesthetic experiences. The upshot is a promising but deflationary approach, both philosophically informed and psychologically sound, that opens new empirical avenues for understanding our aesthetic encounters. This article is part of the theme issue 'Art, aesthetics and predictive processing: theoretical and empirical perspectives'.


Subject(s)
Lepidoptera , Touch Perception , Animals , Esthetics , Exploratory Behavior , Uncertainty , Cognitive Science
2.
Philos Trans R Soc Lond B Biol Sci ; 379(1895): 20220410, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38104599

ABSTRACT

In the last few years, a remarkable convergence of interests and results has emerged between scholars interested in the arts and aesthetics from a variety of perspectives and cognitive scientists studying the mind and brain within the predictive processing (PP) framework. This convergence has so far proven fruitful for both sides: while PP is increasingly adopted as a framework for understanding aesthetic phenomena, the arts and aesthetics, examined under the lens of PP, are starting to be seen as important windows into our mental functioning. The result is a vast and fast-growing research programme that promises to deliver important insights into our aesthetic encounters as well as a wide range of psychological phenomena of general interest. Here, we present this developing research programme, describing its grounds and highlighting its prospects. We start by clarifying how the study of the arts and aesthetics encounters the PP picture of mental functioning (§1). We then go on to outline the prospects of this encounter for the fields involved: philosophy and history of art (§2), psychology of aesthetics and neuroaesthetics (§3) and psychology and neuroscience more generally (§4). The upshot is an ambitious but well-defined framework within which aesthetics and cognitive science can partner up to illuminate crucial aspects of the human mind. This article is part of the theme issue 'Art, aesthetics and predictive processing: theoretical and empirical perspectives'.


Subject(s)
Brain , Neurosciences , Humans , Esthetics , Philosophy , Cognitive Science
3.
Sci Rep ; 9(1): 6310, 2019 Apr 16.
Article in English | MEDLINE | ID: mdl-30988321

ABSTRACT

Random telegraph noise is a widely investigated phenomenon affecting the reliability of the reading operation of the class of memristive devices whose operation relies on formation and dissolution of conductive filaments. The trap and the release of electrons into and from defects surrounding the filament produce current fluctuations at low read voltages. In this work, telegraphic resistance variations are intentionally stimulated through pulse trains in HfO2-based memristive devices. The stimulated noise results from the re-arrangement of ionic defects constituting the filament responsible for the switching. Therefore, the stimulated noise has an ionic origin in contrast to the electronic nature of conventional telegraph noise. The stimulated noise is interpreted as raising from a dynamic equilibrium establishing from the tendencies of ionic drift and diffusion acting on the edges of conductive filament. We present a model that accounts for the observed increase of noise amplitude with the average device resistance. This work provides the demonstration and the physical foundation for the intentional stimulation of ionic telegraph noise which, on one hand, affects the programming operations performed with trains of identical pulses, as for neuromorphic computing, and on the other hand, it can open opportunities for applications relying on stochastic processes in nanoscaled devices.

4.
Sci Rep ; 8(1): 7178, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29740004

ABSTRACT

The development of devices that can modulate their conductance under the application of electrical stimuli constitutes a fundamental step towards the realization of synaptic connectivity in neural networks. Optimization of synaptic functionality requires the understanding of the analogue conductance update under different programming conditions. Moreover, properties of physical devices such as bounded conductance values and state-dependent modulation should be considered as they affect storage capacity and performance of the network. This work provides a study of the conductance dynamics produced by identical pulses as a function of the programming parameters in an HfO2 memristive device. The application of a phenomenological model that considers a soft approach to the conductance boundaries allows the identification of different operation regimes and to quantify conductance modulation in the analogue region. Device non-linear switching kinetics is recognized as the physical origin of the transition between different dynamics and motivates the crucial trade-off between degree of analog modulation and memory window. Different kinetics for the processes of conductance increase and decrease account for device programming asymmetry. The identification of programming trade-off together with an evaluation of device variations provide a guideline for the optimization of the analogue programming in view of hardware implementation of neural networks.

5.
Nanotechnology ; 28(39): 395202, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28718452

ABSTRACT

Resistance switching devices, whose operation is driven by formation (SET) and dissolution (RESET) of conductive paths shorting and disconnecting the two metal electrodes, have recently received great attention and a deep general comprehension of their operation has been achieved. However, the link between switching characteristics and material properties is still quite weak. In particular, doping of the switching oxide layer has often been investigated only for looking at performance upgrade and rarely for a meticulous investigation of the switching mechanism. In this paper, the impact of Al doping of HfO2 devices on their switching operations, retention loss mechanisms and random telegraph noise traces is investigated. In addition, phenomenological modeling of the switching operation is performed for device employing both undoped and doped HfO2. We demonstrate that Al doping influences the filament disruption process during the RESET operation and, in particular, it contributes in preventing an efficient restoration of the oxide with respect to undoped devices.

6.
ACS Appl Mater Interfaces ; 8(49): 33933-33942, 2016 Dec 14.
Article in English | MEDLINE | ID: mdl-27960442

ABSTRACT

Sequential infiltration synthesis (SIS) provides an original strategy to grow inorganic materials by infiltrating gaseous precursors in polymeric films. Combined with microphase-separated nanostructures resulting from block copolymer (BCP) self-assembly, SIS selectively binds the precursors to only one domain, mimicking the morphology of the original BCP template. This methodology represents a smart solution for the fabrication of inorganic nanostructures starting from self-assembled BCP thin films, in view of advanced lithographic application and of functional nanostructure synthesis. The SIS process using trimethylaluminum (TMA) and H2O precursors in self-assembled PS-b-PMMA BCP thin films was established as a model system, where the PMMA phase is selectively infiltrated. However, the temperature range allowed by polymeric material restricts the available precursors to highly reactive reagents, such as TMA. In order to extend the SIS methodology and access a wide library of materials, a crucial step is the implementation of processes using reactive reagents that are fully compatible with the initial polymeric template. This work reports a comprehensive morphological (SEM, SE, AFM) and physicochemical (XPS) investigation of alumina nanostructures synthesized by means of a SIS process using O3 as oxygen precursor in self-assembled PS-b-PMMA thin films with lamellar morphology. The comparison with the H2O-based SIS process validates the possibility to use O3 as oxygen precursor, expanding the possible range of precursors for the fabrication of inorganic nanostructures.

7.
Nanoscale ; 7(34): 14469-75, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26257012

ABSTRACT

Doping of Si nanocrystals (NCs) has been the subject of a strong experimental and theoretical debate for more than a decade. A major difficulty in the understanding of dopant incorporation at the nanoscale is related to the fact that theoretical calculations usually refer to thermodynamic equilibrium conditions, whereas, from the experimental point of view, impurity incorporation is commonly performed during NC formation. This latter circumstance makes impossible to experimentally decouple equilibrium properties from kinetic effects. In this report, we approach the problem by introducing the dopants into the Si NCs, from a spatially separated dopant source. We induce a P diffusion flux to interact with the already-formed and stable Si NCs embedded in SiO2, maintaining the system very close to the thermodynamic equilibrium. Combining advanced material synthesis, multi-technique experimental quantification and simulations of diffusion profiles with a rate-equation model, we demonstrate that a high P concentration (above the P solid solubility in bulk Si) within Si NCs embedded in a SiO2 matrix corresponds to an equilibrium property of the system. Trapping within the Si NCs embedded in a SiO2 matrix is essentially diffusion limited with no additional energy barrier, whereas de-trapping is prevented by a binding energy of 0.9 eV, in excellent agreement with recent theoretical findings that highlighted the impact of different surface terminations (H- or O-terminated NCs) on the stability of the incorporated P atoms.

8.
Nanotechnology ; 26(21): 215301, 2015 May 29.
Article in English | MEDLINE | ID: mdl-25948389

ABSTRACT

Block copolymer-based templates can be exploited for the fabrication of ordered arrays of metal nanoparticles (NPs) with a diameter down to a few nanometers. In order to develop this technique on metal oxide substrates, we studied the self-assembly of polymeric templates directly on the HfO2 surface. Using a random copolymer neutralization layer, we obtained an effective HfO2 surface neutralization, while the effects of surface cleaning and annealing temperature were carefully examined. Varying the block copolymer molecular weight, we produced regular nanoporous templates with feature size variable between 10 and 30 nm and a density up to 1.5 × 10¹¹ cm⁻². With the adoption of a pattern transfer process, we produced ordered arrays of Pt and Pt/Ti NPs with diameters of 12, 21 and 29 nm and a constant size dispersion (σ) of 2.5 nm. For the smallest template adopted, the NP diameter is significantly lower than the original template dimension. In this specific configuration, the granularity of the deposited film probably influences the pattern transfer process and very small NPs of 12 nm were achieved without a significant broadening of the size distribution.

9.
ACS Nano ; 9(3): 2518-29, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25743480

ABSTRACT

Bipolar resistive switching memories based on metal oxides offer a great potential in terms of simple process integration, memory performance, and scalability. In view of ultrahigh density memory applications, a reduced device size is not the only requirement, as the distance between different devices is a key parameter. By exploiting a bottom-up fabrication approach based on block copolymer self-assembling, we obtained the parallel production of bilayer Pt/Ti top electrodes arranged in periodic arrays over the HfO2/TiN surface, building memory devices with a diameter of 28 nm and a density of 5 × 10(10) devices/cm(2). For an electrical characterization, the sharp conducting tip of an atomic force microscope was adopted for a selective addressing of the nanodevices. The presence of devices showing high conductance in the initial state was directly connected with scattered leakage current paths in the bare oxide film, while with bipolar voltage operations we obtained reversible set/reset transitions irrespective of the conductance variability in the initial state. Finally, we disclosed a scalability limit for ultrahigh density memory arrays based on continuous HfO2 thin films, in which a cross-talk between distinct nanodevices can occur during both set and reset transitions.

SELECTION OF CITATIONS
SEARCH DETAIL
...