Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3367, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719808

ABSTRACT

Soil-transmitted helminths (STHs) are major pathogens infecting over a billion people. There are few classes of anthelmintics and there is an urgent need for new drugs. Many STHs use an unusual form of anaerobic metabolism to survive the hypoxic conditions of the host gut. This requires rhodoquinone (RQ), a quinone electron carrier. RQ is not made or used by vertebrate hosts making it an excellent therapeutic target. Here we screen 480 structural families of natural products to find compounds that kill Caenorhabditis elegans specifically when they require RQ-dependent metabolism. We identify several classes of compounds including a family of species-selective inhibitors of mitochondrial respiratory complex I. These identified complex I inhibitors have a benzimidazole core and we determine key structural requirements for activity by screening 1,280 related compounds. Finally, we show several of these compounds kill adult STHs. We suggest these species-selective complex I inhibitors are potential anthelmintics.


Subject(s)
Anthelmintics , Caenorhabditis elegans , Electron Transport Complex I , Ubiquinone/analogs & derivatives , Animals , Anthelmintics/pharmacology , Anthelmintics/chemistry , Electron Transport Complex I/antagonists & inhibitors , Electron Transport Complex I/metabolism , Caenorhabditis elegans/metabolism , Benzimidazoles/pharmacology , Benzimidazoles/chemistry , Species Specificity , Quinones/chemistry , Quinones/pharmacology , Quinones/metabolism , Biological Products/pharmacology , Biological Products/chemistry
2.
ACS Appl Mater Interfaces ; 15(50): 59037-59043, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38063021

ABSTRACT

Due to the great biocompatibility of the aqueous two phase system (ATPS), biological cells have been widely encapsulated in ATPS microdroplets (diameter < 50 µm). However, the immobilization of relatively large multicellular organisms such as Caenorhabditis elegans in ATPS droplets remains challenging as the spontaneous generation of droplets greater than 200 µm is difficult without external perturbations. In this study, we utilize a microneedle-assisted coflow microfludic channel to passively form ATPS microdroplets larger than 200 µm and successfully entrap C. elegans in the microdroplets. We monitor the worm viability and its temporal stroke frequency up to 6 h. We study the effects of dextran (DEX)-to-polyethylene glycol (PEG) flow ratios and worm concentration on the droplet diameter, worm encapsulation efficiency, and the number of droplets containing individual worms. Larger ATPS microdroplets (>200 µm) form in the ranges of capillary number (Ca) between 0.020 to 0.20 and Weber number (We) between 10-5 and 10-3. An ATPS with the encapsulation ability and biocompatibility can offer an alternative immobilization tool for multicellular organisms to existing platforms such as water/oil droplets.


Subject(s)
Caenorhabditis elegans , Water , Animals , Polyethylene Glycols , Lab-On-A-Chip Devices
3.
Elife ; 112022 01 07.
Article in English | MEDLINE | ID: mdl-34994689

ABSTRACT

Microsporidia are ubiquitous obligate intracellular pathogens of animals. These parasites often infect hosts through an oral route, but little is known about the function of host intestinal proteins that facilitate microsporidia invasion. To identify such factors necessary for infection by Nematocida parisii, a natural microsporidian pathogen of Caenorhabditis elegans, we performed a forward genetic screen to identify mutant animals that have a Fitness Advantage with Nematocida (Fawn). We isolated four fawn mutants that are resistant to Nematocida infection and contain mutations in T14E8.4, which we renamed aaim-1 (Antibacterial and Aids invasion by Microsporidia). Expression of AAIM-1 in the intestine of aaim-1 animals restores N. parisii infectivity and this rescue of infectivity is dependent upon AAIM-1 secretion. N. parisii spores in aaim-1 animals are improperly oriented in the intestinal lumen, leading to reduced levels of parasite invasion. Conversely, aaim-1 mutants display both increased colonization and susceptibility to the bacterial pathogen Pseudomonas aeruginosa and overexpression ofaaim-1 reduces P. aeruginosa colonization. Competitive fitness assays show that aaim-1 mutants are favored in the presence of N. parisii but disadvantaged on P. aeruginosa compared to wild-type animals. Together, this work demonstrates how microsporidia exploits a secreted protein to promote host invasion. Our results also suggest evolutionary trade-offs may exist to optimizing host defense against multiple classes of pathogens.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/parasitology , Host-Pathogen Interactions , Microsporidia/physiology , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Intestines/physiology
4.
PLoS Negl Trop Dis ; 15(11): e0009991, 2021 11.
Article in English | MEDLINE | ID: mdl-34843467

ABSTRACT

Soil transmitted helminths (STHs) are major human pathogens that infect over a billion people. Resistance to current anthelmintics is rising and new drugs are needed. Here we combine multiple approaches to find druggable targets in the anaerobic metabolic pathways STHs need to survive in their mammalian host. These require rhodoquinone (RQ), an electron carrier used by STHs and not their hosts. We identified 25 genes predicted to act in RQ-dependent metabolism including sensing hypoxia and RQ synthesis and found 9 are required. Since all 9 have mammalian orthologues, we used comparative genomics and structural modeling to identify those with active sites that differ between host and parasite. Together, we found 4 genes that are required for RQ-dependent metabolism and have different active sites. Finding these high confidence targets can open up in silico screens to identify species selective inhibitors of these enzymes as new anthelmintics.


Subject(s)
Anthelmintics/pharmacology , Helminth Proteins/chemistry , Helminth Proteins/metabolism , Helminths/enzymology , Ubiquinone/analogs & derivatives , Animals , Catalytic Domain , Computer Simulation , Helminthiasis/parasitology , Helminths/chemistry , Helminths/drug effects , Helminths/metabolism , Humans , Ubiquinone/chemistry , Ubiquinone/metabolism
5.
Elife ; 92020 08 03.
Article in English | MEDLINE | ID: mdl-32744503

ABSTRACT

Parasitic helminths use two benzoquinones as electron carriers in the electron transport chain. In normoxia, they use ubiquinone (UQ), but in anaerobic conditions inside the host, they require rhodoquinone (RQ) and greatly increase RQ levels. We previously showed the switch from UQ to RQ synthesis is driven by a change of substrates by the polyprenyltransferase COQ-2 (Del Borrello et al., 2019; Roberts Buceta et al., 2019); however, the mechanism of substrate selection is not known. Here, we show helminths synthesize two coq-2 splice forms, coq-2a and coq-2e, and the coq-2e-specific exon is only found in species that synthesize RQ. We show that in Caenorhabditis elegans COQ-2e is required for efficient RQ synthesis and survival in cyanide. Importantly, parasites switch from COQ-2a to COQ-2e as they transit into anaerobic environments. We conclude helminths switch from UQ to RQ synthesis principally via changes in the alternative splicing of coq-2.


Subject(s)
Alkyl and Aryl Transferases/genetics , Alternative Splicing , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Ubiquinone/analogs & derivatives , Alkyl and Aryl Transferases/metabolism , Animals , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Nematoda/enzymology , Nematoda/genetics , Nematoda/metabolism , Oxidation-Reduction , Platyhelminths/enzymology , Platyhelminths/genetics , Platyhelminths/metabolism , Ubiquinone/metabolism
6.
Nat Methods ; 16(8): 737-742, 2019 08.
Article in English | MEDLINE | ID: mdl-31308550

ABSTRACT

Protein complexes are key macromolecular machines of the cell, but their description remains incomplete. We and others previously reported an experimental strategy for global characterization of native protein assemblies based on chromatographic fractionation of biological extracts coupled to precision mass spectrometry analysis (chromatographic fractionation-mass spectrometry, CF-MS), but the resulting data are challenging to process and interpret. Here, we describe EPIC (elution profile-based inference of complexes), a software toolkit for automated scoring of large-scale CF-MS data to define high-confidence multi-component macromolecules from diverse biological specimens. As a case study, we used EPIC to map the global interactome of Caenorhabditis elegans, defining 612 putative worm protein complexes linked to diverse biological processes. These included novel subunits and assemblies unique to nematodes that we validated using orthogonal methods. The open source EPIC software is freely available as a Jupyter notebook packaged in a Docker container (https://hub.docker.com/r/baderlab/bio-epic/).


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Multiprotein Complexes/isolation & purification , Multiprotein Complexes/metabolism , Protein Interaction Mapping , Proteome/analysis , Software , Animals , Caenorhabditis elegans Proteins/isolation & purification
7.
Elife ; 82019 06 24.
Article in English | MEDLINE | ID: mdl-31232688

ABSTRACT

Parasitic helminths infect over a billion humans. To survive in the low oxygen environment of their hosts, these parasites use unusual anaerobic metabolism - this requires rhodoquinone (RQ), an electron carrier that is made by very few animal species. Crucially RQ is not made or used by any parasitic hosts and RQ synthesis is thus an ideal target for anthelmintics. However, little is known about how RQ is made and no drugs are known to block RQ synthesis. C. elegans makes RQ and can use RQ-dependent metabolic pathways - here, we use C. elegans genetics to show that tryptophan degradation via the kynurenine pathway is required to generate the key amine-containing precursors for RQ synthesis. We show that C. elegans requires RQ for survival in hypoxic conditions and, finally, we establish a high throughput assay for drugs that block RQ-dependent metabolism. This may drive the development of a new class of anthelmintic drugs. This study is a key first step in understanding how RQ is made in parasitic helminths.


Subject(s)
Caenorhabditis elegans/metabolism , Kynurenine/metabolism , Metabolic Networks and Pathways/genetics , Ubiquinone/analogs & derivatives , Anaerobiosis , Animals , Caenorhabditis elegans/genetics , Hypoxia , Survival Analysis , Ubiquinone/biosynthesis
8.
Nat Commun ; 10(1): 1791, 2019 04 17.
Article in English | MEDLINE | ID: mdl-30996251

ABSTRACT

Apoptotic death of cells damaged by genotoxic stress requires regulatory input from surrounding tissues. The C. elegans scaffold protein KRI-1, ortholog of mammalian KRIT1/CCM1, permits DNA damage-induced apoptosis of cells in the germline by an unknown cell non-autonomous mechanism. We reveal that KRI-1 exists in a complex with CCM-2 in the intestine to negatively regulate the ERK-5/MAPK pathway. This allows the KLF-3 transcription factor to facilitate expression of the SLC39 zinc transporter gene zipt-2.3, which functions to sequester zinc in the intestine. Ablation of KRI-1 results in reduced zinc sequestration in the intestine, inhibition of IR-induced MPK-1/ERK1 activation, and apoptosis in the germline. Zinc localization is also perturbed in the vasculature of krit1-/- zebrafish, and SLC39 zinc transporters are mis-expressed in Cerebral Cavernous Malformations (CCM) patient tissues. This study provides new insights into the regulation of apoptosis by cross-tissue communication, and suggests a link between zinc localization and CCM disease.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Apoptosis/physiology , Caenorhabditis elegans Proteins/metabolism , Cation Transport Proteins/metabolism , Hemangioma, Cavernous, Central Nervous System/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Zinc/metabolism , Animals , Animals, Genetically Modified , Apoptosis/radiation effects , Apoptosis Regulatory Proteins/genetics , Brain/pathology , Brain/surgery , Caenorhabditis elegans/physiology , Caenorhabditis elegans/radiation effects , Caenorhabditis elegans Proteins/genetics , Disease Models, Animal , Gene Expression Profiling , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/surgery , Humans , Intracellular Signaling Peptides and Proteins/genetics , KRIT1 Protein/genetics , KRIT1 Protein/metabolism , Kruppel-Like Transcription Factors/metabolism , MAP Kinase Signaling System/physiology , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 7/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , Mutagenesis , Mutation , Phosphorylation/physiology , Sequence Alignment , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
9.
G3 (Bethesda) ; 8(9): 2941-2952, 2018 08 30.
Article in English | MEDLINE | ID: mdl-30061375

ABSTRACT

Many drugs act very rapidly - they can turn on or off their targets within minutes in a whole animal. What are the acute effects of drug treatment and how does an animal respond to these? We developed a simple assay to measure the acute effects of drugs on C. elegans movement and examined the effects of a range of compounds including neuroactive drugs, toxins, environmental stresses and novel compounds on worm movement over a time period of 3 hr. We found a wide variety of acute responses. Many compounds cause rapid paralysis which may be permanent or followed by one or more recovery phases. The recoveries are not the result of some generic stress response but are specific to the drug e.g., recovery from paralysis due to a neuroactive drug requires neurotransmitter pathways whereas recovery from a metabolic inhibitor requires metabolic changes. Finally, we also find that acute responses can vary greatly across development and that there is extensive natural variation in acute responses. In summary, acute responses are sensitive probes of the ability of biological networks to respond to drug treatment and these responses can reveal the action of unexplored pathways.


Subject(s)
Caenorhabditis elegans/metabolism , Locomotion/drug effects , Neurotoxins/toxicity , Paralysis , Synaptic Transmission/drug effects , Animals , Drug Evaluation, Preclinical/methods , Paralysis/chemically induced , Paralysis/metabolism , Paralysis/physiopathology
10.
PLoS Genet ; 13(11): e1007033, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29121637

ABSTRACT

Normal development requires the right splice variants to be made in the right tissues at the right time. The core splicing machinery is engaged in all splicing events, but which precise splice variant is made requires the choice between alternative splice sites-for this to occur, a set of splicing factors (SFs) must recognize and bind to short RNA motifs in the pre-mRNA. In C. elegans, there is known to be extensive variation in splicing patterns across development, but little is known about the targets of each SF or how multiple SFs combine to regulate splicing. Here we combine RNA-seq with in vitro binding assays to study how 4 different C. elegans SFs, ASD-1, FOX-1, MEC-8, and EXC-7, regulate splicing. The 4 SFs chosen all have well-characterised biology and well-studied loss-of-function genetic alleles, and all contain RRM domains. Intriguingly, while the SFs we examined have varied roles in C. elegans development, they show an unexpectedly high overlap in their targets. We also find that binding sites for these SFs occur on the same pre-mRNAs more frequently than expected suggesting extensive combinatorial control of splicing. We confirm that regulation of splicing by multiple SFs is often combinatorial and show that this is functionally significant. We also find that SFs appear to combine to affect splicing in two modes-they either bind in close proximity within the same intron or they appear to bind to separate regions of the intron in a conserved order. Finally, we find that the genes whose splicing are regulated by multiple SFs are highly enriched for genes involved in the cytoskeleton and in ion channels that are key for neurotransmission. Together, this shows that specific classes of genes have complex combinatorial regulation of splicing and that this combinatorial regulation is critical for normal development to occur.


Subject(s)
Alternative Splicing/genetics , Caenorhabditis elegans Proteins/genetics , RNA-Binding Proteins/genetics , Animals , Base Sequence , Caenorhabditis elegans/genetics , Cytoskeleton/genetics , Ion Channels/genetics , Nucleotide Motifs/genetics , RNA Splice Sites/genetics , RNA Splicing/genetics , RNA Splicing Factors/genetics , Synaptic Transmission/genetics
11.
G3 (Bethesda) ; 7(10): 3337-3347, 2017 10 05.
Article in English | MEDLINE | ID: mdl-28839119

ABSTRACT

Genes encoding essential components of core cellular processes are typically highly conserved across eukaryotes. However, a small proportion of essential genes are highly taxonomically restricted; there appear to be no similar genes outside the genomes of highly related species. What are the functions of these poorly characterized taxonomically restricted genes (TRGs)? Systematic screens in Saccharomyces cerevisiae and Caenorhabditis elegans previously identified yeast or nematode TRGs that are essential for viability and we find that these genes share many molecular features, despite having no significant sequence similarity. Specifically, we find that those TRGs with essential phenotypes have an expression profile more similar to highly conserved genes, they have more protein-protein interactions and more protein disorder. Surprisingly, many TRGs play central roles in chromosome segregation; a core eukaryotic process. We thus find that genes that appear to be highly evolutionarily restricted do not necessarily play roles in species-specific biological functions but frequently play essential roles in core eukaryotic processes.


Subject(s)
Caenorhabditis elegans/genetics , Chromosome Segregation , Genes, Fungal , Genes, Helminth , Saccharomyces cerevisiae/genetics , Animals , Gene Expression , Helminth Proteins/genetics , Protein Interaction Maps , Saccharomyces cerevisiae Proteins/genetics
12.
BMC Biol ; 15(1): 61, 2017 07 17.
Article in English | MEDLINE | ID: mdl-28716093

ABSTRACT

BACKGROUND: In addition to DNA, gametes contribute epigenetic information in the form of histones and non-coding RNA. Epigenetic programs often respond to stressful environmental conditions and provide a heritable history of ancestral stress that allows for adaptation and propagation of the species. In the nematode C. elegans, defective epigenetic transmission often manifests as progressive germline mortality. We previously isolated sup-46 in a screen for suppressors of the hexosamine pathway gene mutant, gna-2(qa705). In this study, we examine the role of SUP-46 in stress resistance and progressive germline mortality. RESULTS: We identified SUP-46 as an HNRNPM family RNA-binding protein, and uncovered a highly novel role for SUP-46 in preventing paternally-mediated progressive germline mortality following mating. Proximity biotinylation profiling of human homologs (HNRNPM, MYEF2) identified proteins of ribonucleoprotein complexes previously shown to contain non-coding RNA. Like HNRNPM and MYEF2, SUP-46 was associated with multiple RNA granules, including stress granules, and also formed granules on active chromatin. SUP-46 depletion disrupted germ RNA granules and caused ectopic sperm, increased sperm transcripts, and chronic heat stress sensitivity. SUP-46 was also required for resistance to acute heat stress, and a conserved "MYEF2" motif was identified that was needed for stress resistance. CONCLUSIONS: In mammals, non-coding RNA from the sperm of stressed males has been shown to recapitulate paternal stress phenotypes in the offspring. Our results suggest that HNRNPM family proteins enable stress resistance and paternally-mediated epigenetic transmission that may be conserved across species.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/physiology , Epigenesis, Genetic , Germ Cells/metabolism , Potassium Channels/genetics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism , Potassium Channels/metabolism , Stress, Physiological/genetics
13.
Cell ; 162(2): 391-402, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-26186192

ABSTRACT

Many mutations cause genetic disorders. However, two people inheriting the same mutation often have different severity of symptoms, and this is partly genetic. The effects of genetic background on mutant phenotypes are poorly understood, but predicting them is critical for personalized medicine. To study this phenomenon comprehensively and systematically, we used RNAi to compare loss-of-function phenotypes for ∼1,400 genes in two isolates of C. elegans and find that ∼20% of genes differ in the severity of phenotypes in these two genetic backgrounds. Crucially, this effect of genetic background on the severity of both RNAi and mutant phenotypes can be predicted from variation in the expression levels of the affected gene. This is also true in mammalian cells, suggesting it is a general property of genetic networks. We suggest that differences in the manifestation of mutant phenotypes between individuals are largely the result of natural variation in gene expression.


Subject(s)
Caenorhabditis elegans/genetics , Mutation , Animals , Caenorhabditis elegans/classification , Gene Knockdown Techniques , Genetic Variation , Phenotype , RNA Interference
14.
Mol Cell ; 54(6): 946-959, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24910101

ABSTRACT

Alternative splicing is important for the development and function of the nervous system, but little is known about the differences in alternative splicing between distinct types of neurons. Furthermore, the factors that control cell-type-specific splicing and the physiological roles of these alternative isoforms are unclear. By monitoring alternative splicing at single-cell resolution in Caenorhabditis elegans, we demonstrate that splicing patterns in different neurons are often distinct and highly regulated. We identify two conserved RNA-binding proteins, UNC-75/CELF and EXC-7/Hu/ELAV, which regulate overlapping networks of splicing events in GABAergic and cholinergic neurons. We use the UNC-75 exon network to discover regulators of synaptic transmission and to identify unique roles for isoforms of UNC-64/Syntaxin, a protein required for synaptic vesicle fusion. Our results indicate that combinatorial regulation of alternative splicing in distinct neurons provides a mechanism to specialize metazoan nervous systems.


Subject(s)
Alternative Splicing/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/genetics , Cholinergic Neurons/cytology , GABAergic Neurons/cytology , RNA-Binding Proteins/physiology , Synaptic Transmission/genetics , Syntaxin 1/genetics , Animals , Cholinergic Neurons/metabolism , GABAergic Neurons/metabolism , Mutation , Nervous System/embryology , Nervous System/growth & development , Protein Isoforms/genetics , RNA-Binding Proteins/genetics , Synaptic Transmission/physiology , Synaptic Vesicles/metabolism
15.
Genome Res ; 24(8): 1363-70, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24823668

ABSTRACT

The genetic basis of heritable traits has been studied for decades. Although recent mapping efforts have elucidated genetic determinants of transcript levels, mapping of protein abundance has lagged. Here, we analyze levels of 4084 GFP-tagged yeast proteins in the progeny of a cross between a laboratory and a wild strain using flow cytometry and high-content microscopy. The genotype of trans variants contributed little to protein level variation between individual cells but explained >50% of the variance in the population's average protein abundance for half of the GFP fusions tested. To map trans-acting factors responsible, we performed flow sorting and bulk segregant analysis of 25 proteins, finding a median of five protein quantitative trait loci (pQTLs) per GFP fusion. Further, we find that cis-acting variants predominate; the genotype of a gene and its surrounding region had a large effect on protein level six times more frequently than the rest of the genome combined. We present evidence for both shared and independent genetic control of transcript and protein abundance: More than half of the expression QTLs (eQTLs) contribute to changes in protein levels of regulated genes, but several pQTLs do not affect their cognate transcript levels. Allele replacements of genes known to underlie trans eQTL hotspots confirmed the correlation of effects on mRNA and protein levels. This study represents the first genome-scale measurement of genetic contribution to protein levels in single cells and populations, identifies more than a hundred trans pQTLs, and validates the propagation of effects associated with transcript variation to protein abundance.


Subject(s)
Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Chromosome Mapping , Evolution, Molecular , Gene Expression , Gene Frequency , Genotype , Quantitative Trait Loci , RNA, Fungal/genetics , RNA, Fungal/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics
16.
PLoS Genet ; 10(2): e1004077, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24516395

ABSTRACT

Although two related species may have extremely similar phenotypes, the genetic networks underpinning this conserved biology may have diverged substantially since they last shared a common ancestor. This is termed Developmental System Drift (DSD) and reflects the plasticity of genetic networks. One consequence of DSD is that some orthologous genes will have evolved different in vivo functions in two such phenotypically similar, related species and will therefore have different loss of function phenotypes. Here we report an RNAi screen in C. elegans and C. briggsae to identify such cases. We screened 1333 genes in both species and identified 91 orthologues that have different RNAi phenotypes. Intriguingly, we find that recently evolved genes of unknown function have the fastest evolving in vivo functions and, in several cases, we identify the molecular events driving these changes. We thus find that DSD has a major impact on the evolution of gene function and we anticipate that the C. briggsae RNAi library reported here will drive future studies on comparative functional genomics screens in these nematodes.


Subject(s)
Caenorhabditis elegans/genetics , Evolution, Molecular , Gene Regulatory Networks , RNA Interference , Animals , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/biosynthesis , Caenorhabditis elegans Proteins/genetics , Gene Expression Regulation, Developmental , Phenotype , Sequence Homology, Amino Acid , Species Specificity
17.
Nature ; 499(7457): 172-7, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-23846655

ABSTRACT

RNA-binding proteins are key regulators of gene expression, yet only a small fraction have been functionally characterized. Here we report a systematic analysis of the RNA motifs recognized by RNA-binding proteins, encompassing 205 distinct genes from 24 diverse eukaryotes. The sequence specificities of RNA-binding proteins display deep evolutionary conservation, and the recognition preferences for a large fraction of metazoan RNA-binding proteins can thus be inferred from their RNA-binding domain sequence. The motifs that we identify in vitro correlate well with in vivo RNA-binding data. Moreover, we can associate them with distinct functional roles in diverse types of post-transcriptional regulation, enabling new insights into the functions of RNA-binding proteins both in normal physiology and in human disease. These data provide an unprecedented overview of RNA-binding proteins and their targets, and constitute an invaluable resource for determining post-transcriptional regulatory mechanisms in eukaryotes.


Subject(s)
Gene Expression Regulation/genetics , Nucleotide Motifs/genetics , RNA-Binding Proteins/metabolism , Autistic Disorder/genetics , Base Sequence , Binding Sites/genetics , Conserved Sequence/genetics , Eukaryotic Cells/metabolism , Humans , Molecular Sequence Data , Protein Structure, Tertiary/genetics , RNA Splicing Factors , RNA Stability/genetics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics
18.
EMBO J ; 31(11): 2486-97, 2012 May 30.
Article in English | MEDLINE | ID: mdl-22510880

ABSTRACT

Genetic screens in simple model organisms have identified many of the key components of the conserved signal transduction pathways that are oncogenic when misregulated. Here, we identify H37N21.1 as a gene that regulates vulval induction in let-60(n1046gf), a strain with a gain-of-function mutation in the Caenorhabditis elegans Ras orthologue, and show that somatic deletion of Nrbp1, the mouse orthologue of this gene, results in an intestinal progenitor cell phenotype that leads to profound changes in the proliferation and differentiation of all intestinal cell lineages. We show that Nrbp1 interacts with key components of the ubiquitination machinery and that loss of Nrbp1 in the intestine results in the accumulation of Sall4, a key mediator of stem cell fate, and of Tsc22d2. We also reveal that somatic loss of Nrbp1 results in tumourigenesis, with haematological and intestinal tumours predominating, and that nuclear receptor binding protein 1 (NRBP1) is downregulated in a range of human tumours, where low expression correlates with a poor prognosis. Thus NRBP1 is a conserved regulator of cell fate, that plays an important role in tumour suppression.


Subject(s)
Homeostasis/physiology , Intestines/physiology , Intracellular Signaling Peptides and Proteins/physiology , Receptors, Cytoplasmic and Nuclear/physiology , Stem Cells/physiology , Tumor Suppressor Proteins/genetics , Vesicular Transport Proteins/physiology , Animals , Carrier Proteins/analysis , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , DNA-Binding Proteins/analysis , Female , Gene Deletion , Humans , Intestines/cytology , Intracellular Signaling Peptides and Proteins/genetics , Male , Mice , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Oxidoreductases , Prognosis , Receptors, Cytoplasmic and Nuclear/genetics , Stem Cells/cytology , Transcription Factors/analysis , Tumor Suppressor Proteins/physiology , Ubiquitination/genetics , Ubiquitination/physiology , Vesicular Transport Proteins/genetics
19.
Cell ; 148(4): 792-802, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22341449

ABSTRACT

Almost all eukaryotic genes are conserved, suggesting that they have essential functions. However, only a minority of genes have detectable loss-of-function phenotypes in experimental assays, and multiple theories have been proposed to explain this discrepancy. Here, we use RNA-mediated interference in C. elegans to examine how knockdown of any gene affects the overall fitness of worm populations. Whereas previous studies typically assess phenotypes that are detectable by eye after a single generation, we monitored growth quantitatively over several generations. In contrast to previous estimates, we find that, in these multigeneration population assays, the majority of genes affect fitness, and this suggests that genetic networks are not robust to mutation. Our results demonstrate that, in a single environmental condition, most animal genes play essential roles. This is a higher proportion than for yeast genes, and we suggest that the source of negative selection is different in animals and in unicellular eukaryotes.


Subject(s)
Caenorhabditis elegans/genetics , Gene Regulatory Networks , Genetic Fitness , Animals , Escherichia coli/genetics , Phenotype , RNA Interference
20.
Genome Res ; 21(3): 390-401, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21163941

ABSTRACT

The rate of RNA polymerase II (Pol II) elongation can influence splice site selection in nascent transcripts, yet the extent and physiological relevance of this kinetic coupling between transcription and alternative splicing (AS) is not well understood. We performed experiments to perturb Pol II elongation and then globally compared AS patterns with genome-wide Pol II occupancy. RNA binding and RNA processing functions were significantly enriched among the genes with Pol II elongation inhibition-dependent changes in AS. Under conditions that interfere with Pol II elongation, including cell stress, increased Pol II occupancy was detected in the intronic regions flanking the alternative exons in these genes, and these exons generally became more included. A disproportionately high fraction of these exons introduced premature termination codons that elicited nonsense-mediated mRNA decay (NMD), thereby further reducing transcript levels. Our results provide evidence that kinetic coupling between transcription, AS, and NMD affords a rapid mechanism by which cells can respond to changes in growth conditions, including cell stress, to coordinate the levels of RNA processing factors with mRNA levels.


Subject(s)
Alternative Splicing , RNA Polymerase II/metabolism , RNA Stability , Transcription, Genetic , Codon, Nonsense/genetics , Codon, Nonsense/metabolism , Enzyme Inhibitors/pharmacology , Exons , Gene Expression Regulation , Genome, Human , Humans , Jurkat Cells , Microarray Analysis , Molecular Targeted Therapy , RNA Polymerase II/antagonists & inhibitors , RNA Polymerase II/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...