Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
Add more filters










Publication year range
1.
Biopharm Drug Dispos ; 45(2): 93-106, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38488691

ABSTRACT

Alzheimer's disease is a complex multifactorial neurodegenerative disorder wherein age is a major risk factor. The appropriateness of the Hartley guinea pig (GP), which displays high sequence homologies of its amyloid-ß (Aß40 and Aß42) peptides, Mdr1 and APP (amyloid precursor protein) and similarity in lipid handling to humans, was appraised among 9-40 weeks old guinea pigs. Protein expression levels of P-gp (Abcb1) and Cyp46a1 (24(S)-hydroxylase) for Aß40, and Aß42 efflux and cholesterol metabolism, respectively, were decreased with age, whereas those for Lrp1 (low-density lipoprotein receptor related protein 1), Rage (receptor for advanced glycation endproducts) for Aß efflux and influx, respectively, and Abca1 (the ATP binding cassette subfamily A member 1) for cholesterol efflux, were unchanged among the ages examined. There was a strong, negative correlation of the brain Aß peptide concentrations and Abca1 protein expression levels with free cholesterol. The correlation of Aß peptide concentrations with Cyp46a1 was, however, not significant, and concentrations of the 24(S)-hydroxycholesterol metabolite revealed a decreasing trend from 20 weeks old toward 40 weeks old guinea pigs. The composite data suggest a role for free cholesterol on brain Aß accumulation. The decreases in P-gp and Lrp1 protein levels should further exacerbate the accumulation of Aß peptides in guinea pig brain.


Subject(s)
Amyloid beta-Peptides , Amyloid beta-Protein Precursor , Guinea Pigs , Humans , Animals , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Receptor for Advanced Glycation End Products/metabolism , Cholesterol 24-Hydroxylase/metabolism , Brain/metabolism , Aging , Cholesterol/metabolism
2.
FASEB J ; 38(1): e23396, 2024 01.
Article in English | MEDLINE | ID: mdl-38156414

ABSTRACT

γ-secretase processing of amyloid precursor protein (APP) has long been of interest in the pathological progression of Alzheimer's disease (AD) due to its role in the generation of amyloid-ß. The catalytic component of the enzyme is the presenilins of which there are two homologues, Presenilin-1 (PS1) and Presenilin-2 (PS2). The field has focussed on the PS1 form of this enzyme, as it is typically considered the more active at APP processing. However, much of this work has been completed without appropriate consideration of the specific levels of protein expression of PS1 and PS2. We propose that expression is an important factor in PS1- and PS2-γ-secretase activity, and that when this is considered, PS1 does not have greater activity than PS2. We developed and validated tools for quantitative assessment of PS1 and PS2 protein expression levels to enable the direct comparison of PS in exogenous and endogenous expression systems, in HEK-293 PS1 and/or PS2 knockout cells. We show that exogenous expression of Myc-PS1-NTF is 5.5-times higher than Myc-PS2-NTF. Quantitating endogenous PS protein levels, using a novel PS1/2 fusion standard we developed, showed similar results. When the marked difference in PS1 and PS2 protein levels is considered, we show that compared to PS1-γ-secretase, PS2-γ-secretase has equal or more activity on APP and Notch1. This study has implications for understanding the PS1- and PS2-specific contributions to substrate processing, and their potential influence in AD pathogenesis.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Presenilin-2 , Humans , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Endopeptidases/metabolism , HEK293 Cells , Presenilin-1/genetics , Presenilin-1/metabolism , Presenilin-2/genetics , Presenilin-2/metabolism
3.
Alzheimers Dement ; 19(12): 5418-5436, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37204850

ABSTRACT

INTRODUCTION: Extracellular vesicles (EVs) have been implicated in the spread of neuropathology in Alzheimer's disease (AD), but their involvement in behavioral outcomes linked to AD remains to be determined. METHODS: EVs isolated from post mortem brain tissue from control, AD, or frontotemporal dementia (FTD) donors, as well as from APP/PS1 mice, were injected into the hippocampi of wild-type (WT) or a humanized Tau mouse model (hTau/mTauKO). Memory tests were carried out. Differentially expressed proteins in EVs were assessed by proteomics. RESULTS: Both AD-EVs and APP/PS1-EVs trigger memory impairment in WT mice. We further demonstrate that AD-EVs and FTD-EVs carry Tau protein, present altered protein composition associated with synapse regulation and transmission, and trigger memory impairment in hTau/mTauKO mice. DISCUSSION: Results demonstrate that AD-EVs and FTD-EVs have negative impacts on memory in mice and suggest that, in addition to spreading pathology, EVs may contribute to memory impairment in AD and FTD. HIGHLIGHTS: Aß was detected in EVs from post mortem AD brain tissue and APP/PS1 mice. Tau was enriched in EVs from post mortem AD, PSP and FTD brain tissue. AD-derived EVs and APP/PS1-EVs induce cognitive impairment in wild-type (WT) mice. AD- and FTD-derived EVs induce cognitive impairment in humanized Tau mice. Proteomics findings associate EVs with synapse dysregulation in tauopathies.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Extracellular Vesicles , Frontotemporal Dementia , Mice , Animals , Alzheimer Disease/pathology , Proteome , Brain/pathology , Cognitive Dysfunction/complications , Memory Disorders , Synapses/metabolism , Extracellular Vesicles/metabolism , Mice, Transgenic , Disease Models, Animal , Amyloid beta-Peptides/metabolism
4.
Adv Sci (Weinh) ; 10(12): e2207238, 2023 04.
Article in English | MEDLINE | ID: mdl-36808713

ABSTRACT

Finding effective disease-modifying treatment for Alzheimer's disease remains challenging due to an array of factors contributing to the loss of neural function. The current study demonstrates a new strategy, using multitargeted bioactive nanoparticles to modify the brain microenvironment to achieve therapeutic benefits in a well-characterized mouse model of Alzheimer's disease. The application of brain-penetrating manganese dioxide nanoparticles significantly reduces hypoxia, neuroinflammation, and oxidative stress; ultimately reducing levels of amyloid ß plaques within the neocortex. Analyses of molecular biomarkers and magnetic resonance imaging-based functional studies indicate that these effects improve microvessel integrity, cerebral blood flow, and cerebral lymphatic clearance of amyloid ß. These changes collectively shift the brain microenvironment toward conditions more favorable to continued neural function as demonstrated by improved cognitive function following treatment. Such multimodal disease-modifying treatment may bridge critical gaps in the therapeutic treatment of neurodegenerative disease.


Subject(s)
Alzheimer Disease , Brain , Metal Nanoparticles , Animals , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Cell Hypoxia , Drug Delivery Systems , Lipids/chemistry , Metal Nanoparticles/chemistry , Oxidative Stress , Polymers/chemistry , Brain/metabolism
5.
Mol Neurobiol ; 59(7): 4419-4435, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35567706

ABSTRACT

Small ubiquitin-like modifiers (SUMO) have been implicated in several neurodegenerative diseases. SUMO1 conjugation has been shown to promote aggregation and regulate phosphorylation of the tau protein linked to Alzheimer's disease and related tauopathies. The current study has demonstrated that SUMO1 co-localizes with intraneuronal tau inclusions in progressive supranuclear palsy (PSP). Immunoprecipitation of isolated and solubilized tau fibrils from PSP tissues revealed SUMO1 conjugation to a cleaved and N-terminally truncated tau. The effects of SUMOylation were examined using tau-SUMO fusion proteins which showed a higher propensity for tau oligomerization of PSP-truncated tau and accumulation on microtubules as compared to the full-length protein. This was found to be specific for SUMO1 as the corresponding SUMO2 fusion protein did not display a significantly altered cytoplasmic distribution or aggregation of tau. Blocking proteasome-mediated degradation promoted the aggregation of the tau fusion proteins with the greatest effect observed for truncated tau-SUMO1. The SUMO1 modification of the truncated tau in PSP may represent a detrimental event that promotes aggregation and impedes the ability of cells to remove the resulting protein deposits. This combination of tau truncation and SUMO1 modification may be a contributing factor in PSP pathogenesis.


Subject(s)
Alzheimer Disease , Supranuclear Palsy, Progressive , Tauopathies , Alzheimer Disease/pathology , Humans , Neurofibrillary Tangles/metabolism , SUMO-1 Protein/metabolism , Supranuclear Palsy, Progressive/metabolism , Supranuclear Palsy, Progressive/pathology , Tauopathies/metabolism , Ubiquitins/metabolism , tau Proteins/metabolism
6.
Brain Commun ; 3(4): fcab247, 2021.
Article in English | MEDLINE | ID: mdl-34761222

ABSTRACT

The accumulation of aggregated alpha-synuclein (α-syn) in Parkinson's disease, dementia with Lewy bodies and multiple system atrophy is thought to involve a common prion-like mechanism, whereby misfolded α-syn provides a conformational template for further accumulation of pathological α-syn. We tested whether silencing α-syn gene expression could reduce native non-aggregated α-syn substrate and thereby disrupt the propagation of pathological α-syn initiated by seeding with synucleinopathy-affected mouse brain homogenates. Unilateral intracerebral injections of adeno-associated virus serotype-1 encoding microRNA targeting the α-syn gene reduced the extent and severity of both the α-syn pathology and motor deficits. Importantly, a moderate 50% reduction in α-syn was sufficient to prevent the spread of α-syn pathology to distal brain regions. Our study combines behavioural, immunohistochemical and biochemical data that strongly support α-syn knockdown gene therapy for synucleinopathies.

7.
Front Aging Neurosci ; 13: 665348, 2021.
Article in English | MEDLINE | ID: mdl-34393754

ABSTRACT

AIM: Population based studies indicate a positive association between type 2 diabetes (T2D) and Parkinson's disease (PD) where there is an increased risk of developing PD in patients with T2D. PD is characterized by the abnormal accumulation of intraneuronal aggregated α-synuclein (α-syn) in Lewy bodies, which negatively impact neuronal viability. α-syn is also expressed in both pancreatic islets and skeletal muscle, key players in glucose regulation. Therefore, we examined the functional role of α-syn in these tissues. METHODS: Using mice lacking, overexpressing or transiently injected with α-syn, effects on glucose and insulin tolerance and insulin secretion were determined, with further characterization of the effects on GLUT4 translocation using GLUT4myc myotubes. RESULTS: Mice genetically ablated for α-syn became glucose intolerant and insulin resistant with hyperinsulinemia and reduced glucose-stimulated insulin secretion (GSIS). Mice overexpressing human α-syn are more insulin senstive and glucose tolerant compared to controls with increased GSIS. Injection of purified α-syn monomers also led to improved glucose tolerance and insulin sensitivity with hightened GSIS. α-syn monomer treatments increased surface GLUT4 levels in myotubes but without any significant change in Akt phosphorylation. The increase in cell surface GLUT4 was largely due to a large reduction in GLUT4 endocytosis, however, with a compensatory reduction in GLUT4 exocytosis. CONCLUSION: Cumulatively, this data suggests that α-syn modulates both pancreatic beta cell function and glucose transport in peripheral tissues, thereby playing a pivitol role in the maintenance of normal glucose homeostasis.

8.
Brain ; 144(9): 2759-2770, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34428276

ABSTRACT

The molecular link between amyloid-ß plaques and neurofibrillary tangles, the two pathological hallmarks of Alzheimer's disease, is still unclear. Increasing evidence suggests that amyloid-ß peptide activates multiple regulators of cell cycle pathways, including transcription factors CDKs and E2F1, leading to hyperphosphorylation of tau protein. However, the exact pathways downstream of amyloid-ß-induced cell cycle imbalance are unknown. Here, we show that PAX6, a transcription factor essential for eye and brain development which is quiescent in adults, is increased in the brains of patients with Alzheimer's disease and in APP transgenic mice, and plays a key role between amyloid-ß and tau hyperphosphorylation. Downregulation of PAX6 protects against amyloid-ß peptide-induced neuronal death, suggesting that PAX6 is a key executor of the amyloid-ß toxicity pathway. Mechanistically, amyloid-ß upregulates E2F1, followed by the induction of PAX6 and c-Myb, while Pax6 is a direct target for both E2F1 and its downstream target c-Myb. Furthermore, PAX6 directly regulates transcription of GSK-3ß, a kinase involved in tau hyperphosphorylation and neurofibrillary tangles formation, and its phosphorylation of tau at Ser356, Ser396 and Ser404. In conclusion, we show that signalling pathways that include CDK/pRB/E2F1 modulate neuronal death signals by activating downstream transcription factors c-Myb and PAX6, leading to GSK-3ß activation and tau pathology, providing novel potential targets for pharmaceutical intervention.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/toxicity , PAX6 Transcription Factor/metabolism , Peptide Fragments/toxicity , tau Proteins/metabolism , Alzheimer Disease/pathology , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Cells, Cultured , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phosphorylation/drug effects , Phosphorylation/physiology , Signal Transduction/drug effects , Signal Transduction/physiology
9.
RSC Med Chem ; 12(7): 1154-1163, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34355181

ABSTRACT

As part of our efforts to develop sustainable drugs for Alzheimer's disease (AD), we have been focusing on the inexpensive and largely available cashew nut shell liquid (CNSL) as a starting material for the identification of new acetylcholinesterase (AChE) inhibitors. Herein, we decided to investigate whether cardanol, a phenolic CNSL component, could serve as a scaffold for improved compounds with concomitant anti-amyloid and antioxidant activities. Ten new derivatives, carrying the intact phenolic function and an aminomethyl functionality, were synthesized and first tested for their inhibitory potencies towards AChE and butyrylcholinesterase (BChE). 5 and 11 were found to inhibit human BChE at a single-digit micromolar concentration. Transmission electron microscopy revealed the potential of five derivatives to modulate Aß aggregation, including 5 and 11. In HORAC assays, 5 and 11 performed similarly to standard antioxidant ferulic acid as hydroxyl scavenging agents. Furthermore, in in vitro studies in neuronal cell cultures, 5 and 11 were found to effectively inhibit reactive oxygen species production at a 10 µM concentration. They also showed a favorable initial ADME/Tox profile. Overall, these results suggest that CNSL is a promising raw material for the development of potential disease-modifying treatments for AD.

10.
Glia ; 69(12): 2917-2932, 2021 12.
Article in English | MEDLINE | ID: mdl-34427354

ABSTRACT

Rare coding variants of the microglial triggering receptor expressed on myeloid cells 2 (TREM2) confer an increased risk for Alzheimer's disease (AD) characterized by the progressive accumulation of aggregated forms of amyloid ß peptides (Aß). Aß peptides are generated by proteolytic processing of the amyloid precursor protein (APP). Heterogeneity in proteolytic cleavages and additional post-translational modifications result in the production of several distinct Aß variants that could differ in their aggregation behavior and toxic properties. Here, we sought to assess whether post-translational modifications of Aß affect the interaction with TREM2. Biophysical and biochemical methods revealed that TREM2 preferentially interacts with oligomeric Aß, and that phosphorylation of Aß increases this interaction. Phosphorylation of Aß also affected the TREM2 dependent interaction and phagocytosis by primary microglia and in APP transgenic mouse models. Thus, TREM2 function is important for sensing phosphorylated Aß variants in distinct aggregation states and reduces the accumulation and deposition of these toxic Aß species in preclinical models of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Microglia , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Disease Models, Animal , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Mice, Transgenic , Microglia/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism
12.
Acta Neuropathol Commun ; 9(1): 83, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33971978

ABSTRACT

When injected into genetically modified mice, aggregates of the amyloid-ß (Aß) peptide from the brains of Alzheimer's disease (AD) patients or transgenic AD mouse models seed cerebral Aß deposition in a prion-like fashion. Within the brain, Aß exists as a pool of distinct C-terminal variants with lengths ranging from 37 to 43 amino acids, yet the relative contribution of individual C-terminal Aß variants to the seeding behavior of Aß aggregates remains unknown. Here, we have investigated the relative seeding activities of Aß aggregates composed exclusively of recombinant Aß38, Aß40, Aß42, or Aß43. Cerebral Aß42 levels were not increased in AppNL-F knock-in mice injected with Aß38 or Aß40 aggregates and were only increased in a subset of mice injected with Aß42 aggregates. In contrast, significant accumulation of Aß42 was observed in the brains of all mice inoculated with Aß43 aggregates, and the extent of Aß42 induction was comparable to that in mice injected with brain-derived Aß seeds. Mice inoculated with Aß43 aggregates exhibited a distinct pattern of cerebral Aß pathology compared to mice injected with brain-derived Aß aggregates, suggesting that recombinant Aß43 may polymerize into a unique strain. Our results indicate that aggregates containing longer Aß C-terminal variants are more potent inducers of cerebral Aß deposition and highlight the potential role of Aß43 seeds as a crucial factor in the initial stages of Aß pathology in AD.


Subject(s)
Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Brain/metabolism , Peptide Fragments/genetics , Peptide Fragments/metabolism , Prions/genetics , Prions/metabolism , Protein Aggregates/physiology , Animals , Base Sequence , Brain/pathology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
13.
JCI Insight ; 6(10)2021 05 24.
Article in English | MEDLINE | ID: mdl-34027899

ABSTRACT

GWAS have shown that the common R325W variant of SLC30A8 (ZnT8) increases the risk of type 2 diabetes (T2D). However, ZnT8 haploinsufficiency is protective against T2D in humans, counterintuitive to earlier work in humans and mouse models. Therefore, whether decreasing ZnT8 activity is beneficial or detrimental to ß cell function, especially under conditions of metabolic stress, remains unknown. In order to examine whether the existence of human islet amyloid polypeptide (hIAPP), a coresident of the insulin granule, affects the role of ZnT8 in regulating ß cell function, hIAPP-expressing transgenics were generated with reduced ZnT8 (ZnT8B+/- hIAPP) or null ZnT8 (ZnT8B-/- hIAPP) expression specifically in ß cells. We showed that ZnT8B-/- hIAPP mice on a high-fat diet had intensified amyloid deposition and further impaired glucose tolerance and insulin secretion compared with control, ZnT8B-/-, and hIAPP mice. This can in part be attributed to impaired glucose sensing and islet cell synchronicity. Importantly, ZnT8B+/- hIAPP mice were also glucose intolerant and had reduced insulin secretion and increased amyloid aggregation compared with controls. These data suggest that loss of or reduced ZnT8 activity in ß cells heightened the toxicity induced by hIAPP, leading to impaired ß cell function and glucose homeostasis associated with metabolic stress.


Subject(s)
Amyloidosis/metabolism , Diabetes Mellitus, Type 2/metabolism , Insulin-Secreting Cells/metabolism , Islet Amyloid Polypeptide/metabolism , Zinc Transporter 8 , Animals , Disease Models, Animal , Humans , Islet Amyloid Polypeptide/genetics , Male , Mice , Mice, Transgenic , Zinc Transporter 8/genetics , Zinc Transporter 8/metabolism
14.
J Pathol ; 254(3): 244-253, 2021 07.
Article in English | MEDLINE | ID: mdl-33797777

ABSTRACT

Amyloid plaques and neurofibrillary tangles composed of hyperphosphorylated tau are important contributors to Alzheimer's disease (AD). Tau also impacts pancreatic beta cell function and glucose homeostasis. Amyloid deposits composed of islet amyloid polypeptide (IAPP) are a pathological feature of type 2 diabetes (T2D). The current study investigates the role of human tau (hTau) in combination with human IAPP (hIAPP) as a potential mechanism connecting AD and T2D. Transgenic mice expressing hTau and hIAPP in the absence of murine tau were generated to determine the impact of these pathological factors on glucose metabolism. Co-expression of hIAPP and hTau resulted in mice with increased hyperglycaemia, insulin resistance, and glucose intolerance. The hTau-hIAPP mice also exhibited reduced beta cell area, increased amyloid deposition, impaired insulin processing, and reduced insulin content in islets. Tau phosphorylation also increased after stimulation with high glucose. In addition, brain insulin content and signalling were reduced, and tau phosphorylation was increased in these animals. These data support a link between tau and IAPP amyloid, which seems to act co-ordinately to impair beta cell function and glucose homeostasis, and suggest that the combined pathological actions of these proteins may be a potential mechanism connecting AD and T2D. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Islet Amyloid Polypeptide/metabolism , tau Proteins/metabolism , Animals , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/pathology , Glucose Intolerance/metabolism , Humans , Hyperglycemia/metabolism , Insulin Resistance/physiology , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Mice , Mice, Transgenic
15.
J Biol Chem ; 296: 100631, 2021.
Article in English | MEDLINE | ID: mdl-33823153

ABSTRACT

TREM2 is a pattern recognition receptor, expressed on microglia and myeloid cells, detecting lipids and Aß and inducing an innate immune response. Missense mutations (e.g., R47H) of TREM2 increase risk of Alzheimer's disease (AD). The soluble ectodomain of wild-type TREM2 (sTREM2) has been shown to protect against AD in vivo, but the underlying mechanisms are unclear. We show that Aß oligomers bind to cellular TREM2, inducing shedding of the sTREM2 domain. Wild-type sTREM2 bound to Aß oligomers (measured by single-molecule imaging, dot blots, and Bio-Layer Interferometry) inhibited Aß oligomerization and disaggregated preformed Aß oligomers and protofibrils (measured by transmission electron microscopy, dot blots, and size-exclusion chromatography). Wild-type sTREM2 also inhibited Aß fibrillization (measured by imaging and thioflavin T fluorescence) and blocked Aß-induced neurotoxicity (measured by permeabilization of artificial membranes and by loss of neurons in primary neuronal-glial cocultures). In contrast, the R47H AD-risk variant of sTREM2 is less able to bind and disaggregate oligomeric Aß but rather promotes Aß protofibril formation and neurotoxicity. Thus, in addition to inducing an immune response, wild-type TREM2 may protect against amyloid pathology by the Aß-induced release of sTREM2, which blocks Aß aggregation and neurotoxicity. In contrast, R47H sTREM2 promotes Aß aggregation into protofibril that may be toxic to neurons. These findings may explain how wild-type sTREM2 apparently protects against AD in vivo and why a single copy of the R47H variant gene is associated with increased AD risk.


Subject(s)
Amyloid beta-Peptides/chemistry , Amyloid/chemistry , Membrane Glycoproteins/physiology , Mutant Proteins/metabolism , Mutation , Neurons/pathology , Neurotoxicity Syndromes/pathology , Receptors, Immunologic/physiology , Alzheimer Disease , Amyloid/metabolism , Animals , Mice , Mice, Knockout , Mutant Proteins/genetics , Neurons/metabolism , Neurotoxicity Syndromes/etiology
16.
Acta Neuropathol Commun ; 9(1): 64, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33832546

ABSTRACT

Protein misfolding diseases refer to a variety of disorders that develop as a consequence of the misfolding of proteins in various organs. The etiologies of Parkinson's and Alzheimer's disease remain unclear, but it seems that type two diabetes and other prediabetic states could contribute to the appearance of the sporadic forms of these diseases. In addition to amylin deposition, other amyloidogenic proteins implicated in the pathophysiology of neurodegenerative diseases could have important roles in the pathogenesis of this disease. As we have previously demonstrated the presence of α-synuclein deposits in the pancreas of patients with synucleinopathies, as well as tau and Aß deposits in the pancreatic tissue of Alzheimer's disease patients, we studied the immunoreactivity of amylin, tau and α-synuclein in the pancreas of 138 subjects with neurodegenerative diseases or type two diabetes and assessed whether the pancreatic ß-cells of these subjects present cooccurrence of misfolded proteins. Furthermore, we also assessed the pancreatic expression of prion protein (PrP) in these subjects and its interaction, both in the pancreas and brain, with α-synuclein, tau, Aß and amylin. Our study shows, for the first time, that along with amylin, pancreatic α-synuclein, Aß, PrP and tau may contribute together to the complex pathophysiology of type two diabetes and in the appearance of insulin resistance in Alzheimer's and Parkinson's disease. Furthermore, we show that the same mixed pathologies that are observed in the brains of patients with neurodegenerative diseases are also present outside the nervous system. Finally, we provide the first histological evidence of an interaction between PrP and Aß, α-synuclein, amylin or tau in the pancreas and locus coeruleus. These findings will shed more light on the common pathological pathways shared by neurodegenerative diseases and type two diabetes, benefiting the exploration of common therapeutic strategies to prevent or treat these devastating amyloid diseases.


Subject(s)
Brain/pathology , Diabetes Mellitus, Type 2/pathology , Insulin-Secreting Cells/pathology , Neurodegenerative Diseases/pathology , Prion Proteins/metabolism , Aged , Amyloid beta-Peptides/metabolism , Brain/metabolism , Diabetes Mellitus, Type 2/metabolism , Female , Humans , Islet Amyloid Polypeptide/metabolism , Male , Neurodegenerative Diseases/metabolism , Retrospective Studies , alpha-Synuclein/metabolism , tau Proteins/metabolism
17.
Transl Psychiatry ; 11(1): 251, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33911072

ABSTRACT

Alzheimer's disease (AD) is associated with memory impairment and altered peripheral metabolism. Mounting evidence indicates that abnormal signaling in a brain-periphery metabolic axis plays a role in AD pathophysiology. The activation of pro-inflammatory pathways in the brain, including the interleukin-6 (IL-6) pathway, comprises a potential point of convergence between memory dysfunction and metabolic alterations in AD that remains to be better explored. Using T2-weighted magnetic resonance imaging (MRI), we observed signs of probable inflammation in the hypothalamus and in the hippocampus of AD patients when compared to cognitively healthy control subjects. Pathological examination of post-mortem AD hypothalamus revealed the presence of hyperphosphorylated tau and tangle-like structures, as well as parenchymal and vascular amyloid deposits surrounded by astrocytes. T2 hyperintensities on MRI positively correlated with plasma IL-6, and both correlated inversely with cognitive performance and hypothalamic/hippocampal volumes in AD patients. Increased IL-6 and suppressor of cytokine signaling 3 (SOCS3) were observed in post-mortem AD brains. Moreover, activation of the IL-6 pathway was observed in the hypothalamus and hippocampus of AD mice. Neutralization of IL-6 and inhibition of the signal transducer and activator of transcription 3 (STAT3) signaling in the brains of AD mouse models alleviated memory impairment and peripheral glucose intolerance, and normalized plasma IL-6 levels. Collectively, these results point to IL-6 as a link between cognitive impairment and peripheral metabolic alterations in AD. Targeting pro-inflammatory IL-6 signaling may be a strategy to alleviate memory impairment and metabolic alterations in the disease.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Amyloid beta-Peptides/metabolism , Animals , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Humans , Interleukin-6 , Mice , Plaque, Amyloid
20.
J Clin Invest ; 130(9): 4831-4844, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32544084

ABSTRACT

The amyloid hypothesis posits that the amyloid-beta (Aß) protein precedes and requires microtubule-associated protein tau in a sort of trigger-bullet mechanism leading to Alzheimer's disease (AD) pathology. This sequence of events has become dogmatic in the AD field and is used to explain clinical trial failures due to a late start of the intervention when Aß already activated tau. Here, using a multidisciplinary approach combining molecular biological, biochemical, histopathological, electrophysiological, and behavioral methods, we demonstrated that tau suppression did not protect against Aß-induced damage of long-term synaptic plasticity and memory, or from amyloid deposition. Tau suppression could even unravel a defect in basal synaptic transmission in a mouse model of amyloid deposition. Similarly, tau suppression did not protect against exogenous oligomeric tau-induced impairment of long-term synaptic plasticity and memory. The protective effect of tau suppression was, in turn, confined to short-term plasticity and memory. Taken together, our data suggest that therapies downstream of Aß and tau together are more suitable to combat AD than therapies against one or the other alone.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Long-Term Potentiation , Synapses/metabolism , Synaptic Transmission , tau Proteins/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Animals , Mice , Mice, Knockout , Synapses/genetics , Synapses/pathology , tau Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...