Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Discov ; 12(6): 1560-1579, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35311997

ABSTRACT

Pharmacologic inhibition of epigenetic enzymes can have therapeutic benefit against hematologic malignancies. In addition to affecting tumor cell growth and proliferation, these epigenetic agents may induce antitumor immunity. Here, we discovered a novel immunoregulatory mechanism through inhibition of histone deacetylases (HDAC). In models of acute myeloid leukemia (AML), leukemia cell differentiation and therapeutic benefit mediated by the HDAC inhibitor (HDACi) panobinostat required activation of the type I interferon (IFN) pathway. Plasmacytoid dendritic cells (pDC) produced type I IFN after panobinostat treatment, through transcriptional activation of IFN genes concomitant with increased H3K27 acetylation at these loci. Depletion of pDCs abrogated panobinostat-mediated induction of type I IFN signaling in leukemia cells and impaired therapeutic efficacy, whereas combined treatment with panobinostat and IFNα improved outcomes in preclinical models. These discoveries offer a new therapeutic approach for AML and demonstrate that epigenetic rewiring of pDCs enhances antitumor immunity, opening the possibility of exploiting this approach for immunotherapies. SIGNIFICANCE: We demonstrate that HDACis induce terminal differentiation of AML through epigenetic remodeling of pDCs, resulting in production of type I IFN that is important for the therapeutic effects of HDACis. The study demonstrates the important functional interplay between the immune system and leukemias in response to HDAC inhibition. This article is highlighted in the In This Issue feature, p. 1397.


Subject(s)
Leukemia, Myeloid, Acute , Cell Differentiation , Dendritic Cells , Epigenesis, Genetic , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylases/genetics , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Panobinostat/pharmacology
2.
PLoS One ; 1: e46, 2006 Dec 20.
Article in English | MEDLINE | ID: mdl-17183675

ABSTRACT

Expression patterns in the globin gene cluster are subject to developmental regulation in vivo. While the gamma(A) and gamma(G) genes are expressed in fetal liver, both are silenced in adult erythrocytes. In order to decipher the role of DNA methylation in this process, we generated a YAC transgenic mouse system that allowed us to control gamma(A) methylation during development. DNA methylation causes a 20-fold repression of gamma(A) both in non-erythroid and adult erythroid cells. In erythroid cells this modification works as a dominant mechanism to repress gamma gene expression, probably through changes in histone acetylation that prevent the binding of erythroid transcription factors to the promoter. These studies demonstrate that DNA methylation serves as an elegant in vivo fine-tuning device for selecting appropriate genes in the globin locus. In addition, our findings provide a mechanism for understanding the high levels of gamma-globin transcription seen in patients with Hereditary Persistence of Fetal Hemoglobin, and help explain why 5azaC and butyrate compounds stimulate gamma-globin expression in patients with beta-hemoglobinopathies.


Subject(s)
DNA Methylation , gamma-Globins/genetics , Acetylation , Animals , Base Sequence , Chromosomes, Artificial, Yeast/genetics , DNA Primers/genetics , Erythroblasts/metabolism , Fetal Hemoglobin/genetics , Gene Expression , Histones/chemistry , Histones/metabolism , Humans , Mice , Mice, Transgenic , Promoter Regions, Genetic , Protein Binding , beta-Thalassemia/genetics
3.
Nat Immunol ; 5(6): 630-7, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15107847

ABSTRACT

Antigen receptor genes undergo variable, diversity and joining (V(D)J) recombination, which requires ordered large-scale chromatin remodeling. Here we show that antisense transcription, both genic and intergenic, occurs extensively in the V region of the immunoglobulin heavy chain locus. RNA fluorescence in situ hybridization demonstrates antisense transcription is strictly developmentally regulated and is initiated during the transition from DJ(H) to VDJ(H) recombination and terminates concomitantly with VDJ(H) recombination. Our data show antisense transcription is specific to the V region and suggest transcripts extend across several genes. We propose that antisense transcription remodels the V region to facilitate V(H)-to-DJ(H) recombination. These findings have wider implications for V(D)J recombination of other antigen receptor loci and developmental regulation of multigene loci.


Subject(s)
DNA, Antisense/metabolism , DNA, Intergenic/metabolism , Gene Rearrangement/physiology , Genes, Immunoglobulin/physiology , Transcription, Genetic/physiology , Animals , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , In Situ Hybridization, Fluorescence , Mice , Mice, Inbred C57BL , RNA/metabolism
4.
J Vestib Res ; 13(4-6): 235-42, 2003.
Article in English | MEDLINE | ID: mdl-15096667

ABSTRACT

Following the discovery of a hydrostatic pressure sensor with no associated gas phase in the crab, and the knowledge that several systems of cells in culture show long term alterations to small changes in hydrostatic pressure, we show here that vestibular type II hair cells in a well known model system (the isolated elasmobranch labyrinth), are sensitive to hydrostatic pressure. This new finding for the vertebrate vestibular system may provide an explanation for low levels of resting activity in vertebrate hair cells and explain how fish without swim bladders sense hydrostatic cues. It could have implications for humans using their balancing systems in hypobaric or hyperbaric environments such as in aircraft or during space exploration. Although lacking the piston mechanism thought to operate in crab thread hairs which sense angular acceleration and hydrostatic pressure, the vertebrate system may use larger numbers of sensory cells with resultant improvement in signal to noise ratio. The main properties of the crab hydrostatic pressure sensing system are briefly reviewed and new experimental work on the isolated elasmobranch labyrinth is presented.


Subject(s)
Dogfish/physiology , Hair Cells, Vestibular/physiology , Hydrostatic Pressure , Action Potentials , Afferent Pathways/physiology , Animals , Crustacea/physiology
5.
Nature ; 415(6871): 495-6, 2002 Jan 31.
Article in English | MEDLINE | ID: mdl-11823850

ABSTRACT

Many marine invertebrates and fish respond to hydrostatic pressure in order to regulate their depth and synchronize their behaviour to tidal cycles. Here we investigate the effect of hydrostatic pressure on the vestibular hair cells located in the labyrinth of the dogfish Scyliorhinus canicula, and find that it modulates their spontaneous activity and response to angular acceleration. This may explain not only the low resting activity of vertebrate hair cells but also how fish that do not have swim bladders can sense hydrostatic cues.


Subject(s)
Dogfish/physiology , Hair Cells, Vestibular/physiology , Animals , Hydrostatic Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...