Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sci Rep ; 6: 19163, 2016 Jan 18.
Article in English | MEDLINE | ID: mdl-26777288

ABSTRACT

Climate models simulate an intensifying Arctic hydrologic cycle in response to climatic warming, however the role of surface-atmosphere interactions from degrading frozen ground is unclear in these projections. Using Modern-Era Retrospective Analysis for Research and Applications (MERRA) data in high-latitude Eurasia, we examine long-term variability in surface-atmosphere coupling as represented by the statistical relationship between surface evaporative fraction (EF) and afternoon precipitation. Changes in EF, precipitation, and their statistical association are then related to underlying permafrost type and snow cover. Results indicate significant positive trends in July EF in the Central Siberian Plateau, corresponding to significant increases in afternoon precipitation. The positive trends are only significant over continuous permafrost, with non-significant or negative EF and precipitation trends over isolated, sporadic, and discontinuous permafrost areas. Concurrently, increasing EF and subsequent precipitation are found to coincide with significant trends in May and June snowmelt, which potentially provides the moisture source for the observed enhanced latent heating and moisture recycling in the region. As climate change causes continuous permafrost to transition to discontinuous, discontinuous to sporadic, sporadic to isolated, and isolated permafrost disappears, this will also alter patterns of atmospheric convection, moisture recycling, and hence the hydrologic cycle in high-latitude land areas.

2.
PLoS One ; 9(10): e108736, 2014.
Article in English | MEDLINE | ID: mdl-25299514

ABSTRACT

The factors that trigger sudden, seasonal movements of elephants are uncertain. We hypothesized that savannah elephant movements at the end of the dry season may be a response to their detection of distant thunderstorms. Nine elephants carrying Global Positioning System (GPS) receivers were tracked over seven years in the extremely dry and rugged region of northwestern Namibia. The transition date from dry to wet season conditions was determined annually from surface- and satellite-derived rainfall. The distance, location, and timing of rain events relative to the elephants were determined using the Tropical Rainfall Measurement Mission (TRMM) satellite precipitation observations. Behavioral Change Point Analysis (BCPA) was applied to four of these seven years demonstrating a response in movement of these elephants to intra- and inter-seasonal occurrences of rainfall. Statistically significant changes in movement were found prior to or near the time of onset of the wet season and before the occurrence of wet episodes within the dry season, although the characteristics of the movement changes are not consistent between elephants and years. Elephants in overlapping ranges, but following separate tracks, exhibited statistically valid non-random near-simultaneous changes in movements when rainfall was occurring more than 100 km from their location. While the environmental trigger that causes these excursions remains uncertain, rain-system generated infrasound, which can travel such distances and be detected by elephants, is a possible trigger for such changes in movement.


Subject(s)
Elephants/physiology , Animals , Ecosystem , Environment , Geographic Information Systems , Namibia , Rain , Seasons
3.
Ann N Y Acad Sci ; 1146: 50-9, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19076411

ABSTRACT

The Northern Hemisphere annular mode, also known as the Arctic Oscillation/North Atlantic Oscillation (AO/NAO) is a dominant atmospheric mode in the Northern Hemisphere winter that influences climate fluctuations from the eastern seaboard of the United States to Siberia and from the Arctic to the subtropical Atlantic. After almost a century of scientific investigation, the fundamental mechanisms determining the evolution of the AO/NAO are not yet completely understood. The ocean is favored as the most likely forcing of atmospheric variability, given the time scales of oceanic circulation and its large heat capacity. Our analyses of snow cover, soil temperatures, zonal winds, and geopotential heights identify the effect of land-atmosphere interaction over Eurasia on Northern Hemisphere atmospheric circulation, explaining the predictive signal that links fluctuations of April-October snow cover with the following winter AO/NAO phases.

SELECTION OF CITATIONS
SEARCH DETAIL
...