Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Biomed Pharmacother ; 171: 116148, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38232661

ABSTRACT

Decades of biological and clinical research have led to important advances in recombinant adeno-associated viruses rAAV-based gene therapy gene therapy. However, several challenges must be overcome to fully exploit the potential of rAAV vectors. Innovative approaches to modify viral genome and capsid elements have been used to overcome issues such as unwanted immune responses and off-targeting. While often successful, genetic modification of capsids can drastically reduce vector yield and often fails to produce vectors with properties that translate across different animal species, such as rodents, non-human primates, and humans. Here, we describe a chemical bioconjugation strategy to modify tyrosine residues on AAV capsids using specific ligands, thereby circumventing the need to genetically engineer the capsid sequence. Aromatic electrophilic substitution of the phenol ring of tyrosine residues on AAV capsids improved the in vivo transduction efficiency of rAAV2 vectors in both liver and retinal targets. This tyrosine bioconjugation strategy represents an innovative technology for the engineering of rAAV vectors for human gene therapy.


Subject(s)
Dependovirus , Genetic Therapy , Animals , Transduction, Genetic , Tyrosine/genetics , Liver , Retina , Capsid Proteins/genetics , Genetic Vectors , Gene Transfer Techniques
2.
Gene Ther ; 29(9): 520-535, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35105949

ABSTRACT

Duchenne muscular dystrophy (DMD) is a muscle wasting disorder caused by mutations in the gene encoding dystrophin. Gene therapy using micro-dystrophin (MD) transgenes and recombinant adeno-associated virus (rAAV) vectors hold great promise. To overcome the limited packaging capacity of rAAV vectors, most MD do not include dystrophin carboxy-terminal (CT) domain. Yet, the CT domain is known to recruit α1- and ß1-syntrophins and α-dystrobrevin, a part of the dystrophin-associated protein complex (DAPC), which is a signaling and structural mediator of muscle cells. In this study, we explored the impact of inclusion of the dystrophin CT domain on ΔR4-23/ΔCT MD (MD1), in DMDmdx rats, which allows for relevant evaluations at muscular and cardiac levels. We showed by LC-MS/MS that MD1 expression is sufficient to restore the interactions at a physiological level of most DAPC partners in skeletal and cardiac muscles, and that inclusion of the CT domain increases the recruitment of some DAPC partners at supra-physiological levels. In parallel, we demonstrated that inclusion of the CT domain does not improve MD1 therapeutic efficacy on DMD muscle and cardiac pathologies. Our work highlights new evidences of the therapeutic potential of MD1 and strengthens the relevance of this candidate for gene therapy of DMD.


Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , Animals , Chromatography, Liquid , Dystrophin/genetics , Dystrophin/metabolism , Dystrophin-Associated Protein Complex/metabolism , Genetic Therapy , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Rats , Tandem Mass Spectrometry
3.
J Transl Med ; 19(1): 519, 2021 12 20.
Article in English | MEDLINE | ID: mdl-34930315

ABSTRACT

BACKGROUND: Duchenne muscular dystrophy (DMD) is an X-linked inherited disease caused by mutations in the gene encoding dystrophin that leads to a severe and ultimately life limiting muscle-wasting condition. Recombinant adeno-associated vector (rAAV)-based gene therapy is promising, but the size of the full-length dystrophin cDNA exceeds the packaging capacity of a rAAV. Alternative or complementary strategies that could treat DMD patients are thus needed. Intracellular calcium overload due to a sarcolemma permeability to calcium (SPCa) increase is an early and critical step of the DMD pathogenesis. We assessed herein whether TRPC1 and TRPC3 calcium channels may be involved in skeletal muscle SPCa alterations and could represent therapeutic targets to treat DMD. METHODS: All experiments were conducted in the DMDmdx rat, an animal model that closely reproduces the human DMD disease. We measured the cytosolic calcium concentration ([Ca2+]c) and SPCa in EDL (Extensor Digitorum Longus) muscle fibers from age-matched WT and DMDmdx rats of 1.5 to 7 months old. TRPC1 and TRPC3 expressions were measured in the EDL muscles at both the mRNA and protein levels, by RT-qPCR, western blot and immunocytofluorescence analysis. RESULTS: As expected from the malignant hyperthermia like episodes observed in several DMDmdx rats, calcium homeostasis alterations were confirmed by measurements of early increases in [Ca2+]c and SPCa in muscle fibers. TRPC3 and TRPC1 protein levels were increased in DMDmdx rats. This was observed as soon as 1.5 months of age for TRPC3 but only at 7 months of age for TRPC1. A slight but reliable shift of the TRPC3 apparent molecular weight was observed in DMDmdx rat muscles. Intracellular localization of both channels was not altered. We thus focused our attention on TRPC3. Application of Pyr10, a specific inhibitor of TRPC3, abolished the differences between SPCa values measured in WT and DMDmdx. Finally, we showed that a rAAV-microdystrophin based treatment induced a high microdystrophin expression but only partial prevention of calcium homeostasis alterations, skeletal muscle force and TRPC3 protein increase. CONCLUSIONS: All together our results show that correcting TRPC3 channel expression and/or activity appear to be a promising approach as a single or as a rAAV-based complementary therapy to treat DMD.


Subject(s)
Muscular Dystrophy, Duchenne , Animals , Genetic Therapy/methods , Humans , Mice , Mice, Inbred mdx , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/therapy , Rats
4.
Nat Commun ; 8: 16105, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28742067

ABSTRACT

Duchenne muscular dystrophy (DMD) is an incurable X-linked muscle-wasting disease caused by mutations in the dystrophin gene. Gene therapy using highly functional microdystrophin genes and recombinant adeno-associated virus (rAAV) vectors is an attractive strategy to treat DMD. Here we show that locoregional and systemic delivery of a rAAV2/8 vector expressing a canine microdystrophin (cMD1) is effective in restoring dystrophin expression and stabilizing clinical symptoms in studies performed on a total of 12 treated golden retriever muscular dystrophy (GRMD) dogs. Locoregional delivery induces high levels of microdystrophin expression in limb musculature and significant amelioration of histological and functional parameters. Systemic intravenous administration without immunosuppression results in significant and sustained levels of microdystrophin in skeletal muscles and reduces dystrophic symptoms for over 2 years. No toxicity or adverse immune consequences of vector administration are observed. These studies indicate safety and efficacy of systemic rAAV-cMD1 delivery in a large animal model of DMD, and pave the way towards clinical trials of rAAV-microdystrophin gene therapy in DMD patients.


Subject(s)
Dystrophin/genetics , Gene Transfer Techniques , Muscle, Skeletal/metabolism , Muscular Dystrophy, Animal/therapy , Muscular Dystrophy, Duchenne/genetics , Administration, Intravenous , Animals , Dependovirus , Disease Models, Animal , Dogs , Genetic Therapy , Genetic Vectors , Male , Muscle, Skeletal/physiopathology , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/physiopathology , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/physiopathology , Transgenes
5.
BMC Musculoskelet Disord ; 18(1): 153, 2017 04 12.
Article in English | MEDLINE | ID: mdl-28403854

ABSTRACT

BACKGROUND: Accelerometric analysis of gait abnormalities in golden retriever muscular dystrophy (GRMD) dogs is of limited sensitivity, and produces highly complex data. The use of discriminant analysis may enable simpler and more sensitive evaluation of treatment benefits in this important preclinical model. METHODS: Accelerometry was performed twice monthly between the ages of 2 and 12 months on 8 healthy and 20 GRMD dogs. Seven accelerometric parameters were analysed using linear discriminant analysis (LDA). Manipulation of the dependent and independent variables produced three distinct models. The ability of each model to detect gait alterations and their pattern change with age was tested using a leave-one-out cross-validation approach. RESULTS: Selecting genotype (healthy or GRMD) as the dependent variable resulted in a model (Model 1) allowing a good discrimination between the gait phenotype of GRMD and healthy dogs. However, this model was not sufficiently representative of the disease progression. In Model 2, age in months was added as a supplementary dependent variable (GRMD_2 to GRMD_12 and Healthy_2 to Healthy_9.5), resulting in a high overall misclassification rate (83.2%). To improve accuracy, a third model (Model 3) was created in which age was also included as an explanatory variable. This resulted in an overall misclassification rate lower than 12%. Model 3 was evaluated using blinded data pertaining to 81 healthy and GRMD dogs. In all but one case, the model correctly matched gait phenotype to the actual genotype. Finally, we used Model 3 to reanalyse data from a previous study regarding the effects of immunosuppressive treatments on muscular dystrophy in GRMD dogs. Our model identified significant effect of immunosuppressive treatments on gait quality, corroborating the original findings, with the added advantages of direct statistical analysis with greater sensitivity and more comprehensible data representation. CONCLUSIONS: Gait analysis using LDA allows for improved analysis of accelerometry data by applying a decision-making analysis approach to the evaluation of preclinical treatment benefits in GRMD dogs.


Subject(s)
Accelerometry/statistics & numerical data , Gait/drug effects , Gait/physiology , Immunosuppressive Agents/therapeutic use , Muscular Dystrophy, Animal/drug therapy , Muscular Dystrophy, Animal/physiopathology , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/physiopathology , Accelerometry/instrumentation , Age Factors , Animals , Clinical Decision-Making/methods , Discriminant Analysis , Disease Models, Animal , Disease Progression , Dogs , Genotype , Linear Models , Male , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Duchenne/genetics , Phenotype , Sensitivity and Specificity , Treatment Outcome
6.
Biol Open ; 5(11): 1691-1696, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27870637

ABSTRACT

Autosomal dominant centronuclear myopathy (CNM) is a rare congenital myopathy characterized by centrally located nuclei in muscle fibers. CNM results from mutations in the gene encoding dynamin 2 (DNM2), a large GTPase involved in endocytosis, intracellular membrane trafficking, and cytoskeleton regulation. We developed a knock-in mouse model expressing the most frequent DNM2-CNM mutation; i.e. the KI-Dnm2R465W model. Heterozygous (HTZ) KI-Dnm2 mice progressively develop muscle atrophy, impairment of contractile properties, histopathological abnormalities, and elevated cytosolic calcium concentration. Here, we aim at better characterizing the calcium homeostasis impairment in extensor digitorum longus (EDL) and soleus muscles from adult HTZ KI-Dnm2 mice. We demonstrate abnormal contractile properties and cytosolic Ca2+ concentration in EDL but not soleus muscles showing that calcium impairment is correlated with muscle weakness and might be a determinant factor of the spatial muscle involvement. In addition, the elevated cytosolic Ca2+ concentration in EDL muscles is associated with an increased sarcolemmal permeability to Ca2+ and releasable Ca2+ content from the sarcoplasmic reticulum. However, amplitude and kinetics characteristics of the calcium transient appear unchanged. This suggests that calcium defect is probably not a primary cause of decreased force generation by compromised sarcomere shortening but may be involved in long-term deleterious consequences on muscle physiology. Our results highlight the first pathomechanism which may explain the spatial muscle involvement occurring in DNM2-related CNM and open the way toward development of a therapeutic approach to normalize calcium content.

7.
Skelet Muscle ; 6: 23, 2016.
Article in English | MEDLINE | ID: mdl-27441081

ABSTRACT

BACKGROUND: The greater susceptibility to contraction-induced skeletal muscle injury (fragility) is an important dystrophic feature and tool for testing preclinic dystrophin-based therapies for Duchenne muscular dystrophy. However, how these therapies reduce the muscle fragility is not clear. METHODS: To address this question, we first determined the event(s) of the excitation-contraction cycle which is/are altered following lengthening (eccentric) contractions in the mdx muscle. RESULTS: We found that the immediate force drop following lengthening contractions, a widely used measure of muscle fragility, was associated with reduced muscle excitability. Moreover, the force drop can be mimicked by an experimental reduction in muscle excitation of uninjured muscle. Furthermore, the force drop was not related to major neuromuscular transmission failure, excitation-contraction uncoupling, and myofibrillar impairment. Secondly, and importantly, the re-expression of functional truncated dystrophin in the muscle of mdx mice using an exon skipping strategy partially prevented the reductions in both force drop and muscle excitability following lengthening contractions. CONCLUSION: We demonstrated for the first time that (i) the increased susceptibility to contraction-induced muscle injury in mdx mice is mainly attributable to reduced muscle excitability; (ii) dystrophin-based therapy improves fragility of the dystrophic skeletal muscle by preventing reduction in muscle excitability.


Subject(s)
Dystrophin/metabolism , Excitation Contraction Coupling , Genetic Therapy , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/therapy , RNA, Small Nuclear/genetics , Action Potentials , Animals , Dependovirus/genetics , Disease Models, Animal , Dystrophin/genetics , Genetic Predisposition to Disease , Genetic Vectors , Mice, Inbred mdx , Muscle Strength , Muscle, Skeletal/physiopathology , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/physiopathology , Phenotype , RNA, Small Nuclear/metabolism , Time Factors , Up-Regulation
8.
Am J Pathol ; 185(7): 2012-24, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26009153

ABSTRACT

There is fear that mechanical overloading (OVL; ie, high-force contractions) accelerates Duchenne muscular dystrophy. Herein, we determined whether short-term OVL combined with wheel running, short-term OVL combined with irradiation, and long-term OVL are detrimental for hind limb mdx mouse muscle, a murine model of Duchene muscular dystrophy exhibiting milder dystrophic features. OVL was induced by the surgical ablation of the synergic muscles of the plantaris muscle, a fast muscle susceptible to contraction-induced muscle damage in mdx mice. We found that short-term OVL combined with wheel and long-term OVL did not worsen the deficit in specific maximal force (ie, absolute maximal force normalized to muscle size) and histological markers of muscle damage (percentage of regenerating fibers and fibrosis) in mdx mice. Moreover, long-term OVL did not increase the alteration in calcium homeostasis and did not deplete muscle cell progenitors expressing Pax 7 in mdx mice. Irradiation before short-term OVL, which is believed to inhibit muscle regeneration, was not more detrimental to mdx than control mice. Interestingly, short-term OVL combined with wheel and long-term OVL markedly improved the susceptibility to contraction-induced damage, increased absolute maximal force, induced hypertrophy, and promoted a slower, more oxidative phenotype. Together, these findings indicate that OVL is beneficial to mdx muscle, and muscle regeneration does not mask the potentially detrimental effect of OVL.


Subject(s)
Muscle, Skeletal/physiopathology , Muscular Dystrophy, Animal/physiopathology , Muscular Dystrophy, Duchenne/physiopathology , Animals , Disease Models, Animal , Female , Hypertrophy , Lower Extremity , Male , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Motor Activity , Muscle Contraction , Muscle, Skeletal/radiation effects , Mutation , Regeneration , Satellite Cells, Skeletal Muscle/physiology , Satellite Cells, Skeletal Muscle/radiation effects
9.
Am J Pathol ; 184(10): 2803-15, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25084345

ABSTRACT

Hypertension is often associated with skeletal muscle pathological conditions related to function and metabolism. The mechanisms underlying the development of these pathological conditions remain undefined. Because calcium homeostasis is a biomarker of muscle function, we assessed whether it is altered in hypertensive muscles. We measured resting intracellular calcium and store-operated calcium entry (SOCE) in fast- and slow-twitch muscle fibers from normotensive Wistar-Kyoto rats and spontaneously hypertensive rats (SHRs) by cytofluorimetric technique and determined the expression of SOCE gene machinery by real-time PCR. Hypertension caused a phenotype-dependent dysregulation of calcium homeostasis; the resting intracellular calcium of extensor digitorum longus and soleus muscles of SHRs were differently altered with respect to the related muscle of normotensive animals. In addition, soleus muscles of SHR showed reduced activity of the sarcoplasmic reticulum and decreased sarcolemmal calcium permeability at rest and after SOCE activation. Accordingly, we found an alteration of the expression levels of some SOCE components, such as stromal interaction molecule 1, calcium release-activated calcium modulator 1, and transient receptor potential canonical 1. The hypertension-induced alterations of calcium homeostasis in the soleus muscle of SHRs occurred with changes of some functional outcomes as excitability and resting chloride conductance. We provide suitable targets for therapeutic interventions aimed at counterbalancing muscle performance decline in hypertension, and propose the reported calcium-dependent parameters as indexes to predict how the antihypertensive drugs could influence muscle function.


Subject(s)
Calcium/metabolism , Hypertension/physiopathology , Muscle Fibers, Slow-Twitch/metabolism , Muscle, Skeletal/metabolism , Animals , Caffeine/metabolism , Calcium/analysis , Disease Models, Animal , Gene Expression Profiling , Homeostasis , Humans , Male , Muscle Contraction/physiology , Muscle Fibers, Slow-Twitch/physiology , Muscle, Skeletal/physiology , Phenotype , Rats , Rats, Inbred SHR , Rats, Inbred WKY
10.
Steroids ; 87: 6-11, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24844204

ABSTRACT

As androgens might have rapid androgen-receptor (AR) independent action on muscle cells, we analysed the in vivo acute effect of androgens on maximal force generation capacity and electrically evoked calcium transient responsible for the excitation-contraction coupling in skeletal muscle from wild-type male mice and muscle fibre androgen receptor (AR) deficient (AR(skm-/y)) male mice. We tested the hypothesis that acute in vivo androgen treatment improves contractility and modifies calcium transient in mouse hindlimb muscles. In addition, we determined whether the reduced maximal force generation capacity of AR(skm-/y) mice is caused by an alteration in calcium transient. We found that acute dehydrotestosterone (DHT) and testosterone treatment of mice does not change in situ maximal force, power or fatigue resistance of tibialis anterior muscles. In agreement with this observation, maximal force and twitch kinetics also remained unchanged when both whole extensor digitorum longus (EDL) muscle or fibre bundles were incubated in vitro with DHT. Electrically evoked calcium transient, i.e. calcium amplitude, time to peak and decay, was also not modified by DHT treatment of EDL muscle fibre bundles. Finally, we found no difference in calcium transient between AR(skm-/y) and wild-type mice despite the reduced maximal force in EDL fibre bundles of AR(skm-/y) mice. In conclusion, acute androgen treatment has no ergogenic effect on muscle contractility and does not affect calcium transient in response to stimulation. In addition, the reduced maximal force of AR(skm-/y) mice is not related to calcium transient dysfunction.


Subject(s)
Androgens/pharmacology , Calcium Signaling/drug effects , Electric Stimulation , Muscle Contraction/drug effects , Muscle, Skeletal/cytology , Muscle, Skeletal/physiology , Animals , Male , Mice , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Receptors, Androgen/deficiency
11.
Endocrinology ; 154(10): 3764-75, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23836033

ABSTRACT

The orexigenic and anabolic effects induced by ghrelin and the synthetic GH secretagogues (GHSs) are thought to positively contribute to therapeutic approaches and the adjunct treatment of a number of diseases associated with muscle wasting such as cachexia and sarcopenia. However, many questions about the potential utility and safety of GHSs in both therapy and skeletal muscle function remain unanswered. By using fura-2 cytofluorimetric technique, we determined the acute effects of ghrelin, as well as of peptidyl and nonpeptidyl synthetic GHSs on calcium homeostasis, a critical biomarker of muscle function, in isolated tendon-to-tendon male rat skeletal muscle fibers. The synthetic nonpeptidyl GHSs, but not peptidyl ghrelin and hexarelin, were able to significantly increase resting cytosolic calcium [Ca²âº]i. The nonpeptidyl GHS-induced [Ca²âº]i increase was independent of GHS-receptor 1a but was antagonized by both thapsigargin/caffeine and cyclosporine A, indicating the involvement of the sarcoplasmic reticulum and mitochondria. Evaluation of the effects of a pseudopeptidyl GHS and a nonpeptidyl antagonist of the GHS-receptor 1a together with a drug-modeling study suggest the conclusion that the lipophilic nonpeptidyl structure of the tested compounds is the key chemical feature crucial for the GHS-induced calcium alterations in the skeletal muscle. Thus, synthetic GHSs can have different effects on skeletal muscle fibers depending on their molecular structures. The calcium homeostasis dysregulation specifically induced by the nonpeptidyl GHSs used in this study could potentially counteract the beneficial effects associated with these drugs in the treatment of muscle wasting of cachexia- or other age-related disorders.


Subject(s)
Appetite Stimulants/pharmacology , Calcium Signaling/drug effects , Ghrelin/analogs & derivatives , Muscle, Skeletal/drug effects , Receptors, Ghrelin/agonists , Animals , Appetite Stimulants/adverse effects , Cell Line , Cell Membrane Permeability/drug effects , Cell Survival/drug effects , Cytosol/drug effects , Cytosol/metabolism , Ghrelin/metabolism , Growth Hormone/metabolism , Male , Mitochondria, Muscle/drug effects , Mitochondria, Muscle/metabolism , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Oligopeptides/adverse effects , Oligopeptides/pharmacology , Piperidines/adverse effects , Piperidines/pharmacology , Pituitary Gland, Anterior/drug effects , Pituitary Gland, Anterior/metabolism , Rats , Rats, Wistar , Receptors, Ghrelin/antagonists & inhibitors , Receptors, Ghrelin/metabolism , Sarcolemma/drug effects , Sarcolemma/metabolism , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Spiro Compounds/adverse effects , Spiro Compounds/pharmacology , Structure-Activity Relationship
12.
Neuromuscul Disord ; 23(7): 575-9, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23731976

ABSTRACT

Because it is due to a mutation on the X-chromosome, Duchenne muscular dystrophy rarely affects women, unless there is an unequal lyonisation of the X-chromosome containing the normal dystrophin gene. We report here the unique situation of a symptomatic Duchenne muscular dystrophy woman who was transplanted with myoblasts received from her asymptomatic monozygotic twin sister 20 years ago. Specific dynamometry was performed to possibly detect a long-term effect of this cell therapy. Long-term safety of myoblast transplantation was established by this exceptional case. However, long-term efficacy could not be definitively asserted for this patient, in spite of several clues suggesting beneficial effects.


Subject(s)
Muscular Dystrophy, Duchenne/therapy , Myoblasts/transplantation , Cell- and Tissue-Based Therapy/adverse effects , Female , Humans , Muscular Dystrophy, Duchenne/diagnosis , Muscular Dystrophy, Duchenne/genetics , Mutation/genetics , Treatment Outcome , Twins, Monozygotic
13.
J Mol Cell Cardiol ; 52(6): 1299-307, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22465693

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is frequently caused by mutations in MYBPC3 encoding cardiac myosin-binding protein C (cMyBP-C). The mechanisms leading from gene mutations to the HCM phenotype remain incompletely understood, partially because current mouse models of HCM do not faithfully reflect the human situation and early hypertrophy confounds the interpretation of functional alterations. The goal of this study was to evaluate whether myofilament Ca(2+) sensitization and diastolic dysfunction are associated or precede the development of left ventricular hypertrophy (LVH) in HCM. We evaluated the function of skinned and intact cardiac myocytes, as well as the intact heart in a recently developed Mybpc3-targeted knock-in mouse model carrying a point mutation frequently associated with HCM. Compared to wild-type, 10-week old homozygous knock-in mice exhibited i) higher myofilament Ca(2+) sensitivity in skinned ventricular trabeculae, ii) lower diastolic sarcomere length, and faster Ca(2+) transient decay in intact myocytes, and iii) LVH, reduced fractional shortening, lower E/A and E'/A', and higher E/E' ratios by echocardiography and Doppler analysis, suggesting systolic and diastolic dysfunction. In contrast, heterozygous knock-in mice, which mimic the human HCM situation, did not exhibit LVH or systolic dysfunction, but exhibited higher myofilament Ca(2+) sensitivity, faster Ca(2+) transient decay, and diastolic dysfunction. These data demonstrate that myofilament Ca(2+) sensitization and diastolic dysfunction are early phenotypic consequences of Mybpc3 mutations independent of LVH. The accelerated Ca(2+) transients point to compensatory mechanisms directed towards normalization of relaxation. We propose that HCM is a model for diastolic heart failure and this mouse model could be valuable in studying mechanisms and treatment modalities.


Subject(s)
Calcium/metabolism , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/physiopathology , Carrier Proteins/genetics , Heterozygote , Mutation , Myofibrils/metabolism , Animals , Cardiomyopathy, Hypertrophic/metabolism , Diastole , Echocardiography , Gene Knock-In Techniques , Gene Order , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Mice , Mice, Transgenic , Myocytes, Cardiac/metabolism
14.
Traffic ; 13(6): 869-79, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22369075

ABSTRACT

Dynamin 2 (Dnm2) is involved in endocytosis and intracellular membrane trafficking through its function in vesicle formation from distinct membrane compartments. Heterozygous (HTZ) mutations in the DNM2 gene cause dominant centronuclear myopathy or Charcot-Marie-Tooth neuropathy. We generated a knock-in Dnm2R465W mouse model expressing the most frequent human mutation and recently reported that HTZ mice progressively developed a myopathy. We investigated here the cause of neonatal lethality occurring in homozygous (HMZ) mice. We show that HMZ mice present at birth with a reduced body weight, hypoglycemia, increased liver glycogen content and hepatomegaly, in agreement with a defect in neonatal autophagy. In vitro studies performed in HMZ embryonic fibroblasts point out to a decrease in the autophagy flux prior to degradation at the autolysosome. We show that starved HMZ cells have a higher number of immature autophagy-related structures probably due to a defect of acidification. Our results highlight the role of Dnm2 in the cross talk between endosomal and autophagic pathways and evidence a new role of Dnm2-dependent membrane trafficking in autophagy which may be relevant in DNM2-related human diseases.


Subject(s)
Autophagy , Dynamin II/genetics , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/metabolism , Animals , Disease Models, Animal , Dynamin II/metabolism , Fibroblasts/metabolism , Gene Expression Regulation , Genotype , Glycogen/metabolism , Homozygote , Liver/metabolism , Lysosomes/metabolism , Mice , Mice, Inbred C57BL , Subcellular Fractions , Time Factors
15.
Hum Mol Genet ; 19(24): 4820-36, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-20858595

ABSTRACT

Autosomal dominant centronuclear myopathy (AD-CNM) is due to mutations in the gene encoding dynamin 2 (DNM2) involved in endocytosis and intracellular membrane trafficking. To understand the pathomechanisms resulting from a DNM2 mutation, we generated a knock-in mouse model expressing the most frequent AD-CNM mutation (KI-Dnm2(R465W)). Heterozygous (HTZ) mice developed a myopathy showing a specific spatial and temporal muscle involvement. In the primarily and prominently affected tibialis anterior muscle, impairment of the contractile properties was evidenced at weaning and was progressively associated with atrophy and histopathological abnormalities mainly affecting mitochondria and reticular network. Expression of genes involved in ubiquitin-proteosome and autophagy pathways was up-regulated during DNM2-induced atrophy. In isolated muscle fibers from wild-type and HTZ mice, Dnm2 localized in regions of intense membrane trafficking (I-band and perinuclear region), emphasizing the pathophysiological hypothesis in which DNM2-dependent trafficking would be altered. In addition, HTZ fibers showed an increased calcium concentration as well as an intracellular Dnm2 and dysferlin accumulation. A similar dysferlin retention, never reported so far in congenital myopathies, was also demonstrated in biopsies from DNM2-CNM patients and can be considered as a new marker to orientate direct genetic testing. Homozygous (HMZ) mice died during the first hours of life. Impairment of clathrin-mediated endocytosis, demonstrated in HMZ embryonic fibroblasts, could be the cause of lethality. Overall, this first mouse model of DNM2-related myopathy shows the crucial role of DNM2 in muscle homeostasis and will be a precious tool to study DNM2 functions in muscle, pathomechanisms of DNM2-CNM and developing therapeutic strategies.


Subject(s)
Dynamin II/genetics , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Mutation/genetics , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/physiopathology , Animals , Behavior, Animal , Calcium/metabolism , Dysferlin , Embryo, Mammalian/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Heterozygote , Homozygote , Humans , Immunohistochemistry , Membrane Proteins/metabolism , Mice , Mice, Transgenic , Motor Activity/physiology , Muscle Contraction/physiology , Muscle Proteins/metabolism , Muscle Weakness/complications , Muscle Weakness/pathology , Muscle Weakness/physiopathology , Muscle, Skeletal/ultrastructure , Muscular Atrophy/complications , Muscular Atrophy/pathology , Muscular Atrophy/physiopathology , Phenotype , Protein Transport , Subcellular Fractions/metabolism
16.
Am J Physiol Cell Physiol ; 299(3): C706-13, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20592245

ABSTRACT

Muscular dystrophies are often associated with significant cardiac disease that can be the prominent feature associated with gene mutations in sarcoglycan. Cardiac cell death is a main feature of cardiomyopathy in sarcoglycan deficiency and may arise as a cardiomyocyte intrinsic process that remains unclear. Deficiency of delta-sarcoglycan (delta-SG) induces disruption of the dystrophin-associated glycoprotein complex, a known cause of membrane instability that may explain cardiomyocytes cytosolic Ca2+ increase. In this study we assessed the hypothesis that cytosolic Ca2+ increase triggers cardiomyocyte death through mitochondrial Ca2+ overload and dysfunction in the delta-SG-deficient CHF147 hamster. We showed that virtually all isolated CHF147 ventricular myocytes exhibited elevated cytosolic and mitochondrial Ca2+ levels by the use of the Fura-2 and Rhod-2 fluorescent probes. Observation of living cells with Mito-Tracker red lead to the conclusion that approximately 15% of isolated CHF147 cardiomyocytes had disorganized mitochondria. Transmission electron microscope imaging showed mitochondrial swelling associated with crest and membrane disruption. Analysis of the mitochondrial permeability transition pore (MPTP) activity using calcein revealed that mitochondria of CHF147 ventricular cells were twofold leakier than wild types, whereas reactive oxygen species production was unchanged. Bax, Bcl-2, and LC3 expression analysis by Western blot indicated that the intrinsic apoptosis and the cell death associated to autophagy pathways were not significantly activated in CHF147 hearts. Our results lead to conclusion that cardiomyocytes death in delta-SG-deficient animals is an intrinsic phenomenon, likely related to Ca2+-induced necrosis. In this process Ca2+ overload-induced MPTP activation and mitochondrial disorganization may have an important role.


Subject(s)
Calcium/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Myocytes, Cardiac/metabolism , Sarcoglycans/metabolism , Animals , Cell Death , Cricetinae , Cytosol/metabolism , Heart Ventricles/cytology , In Vitro Techniques , Male , Mesocricetus , Microtubule-Associated Proteins/biosynthesis , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondrial Permeability Transition Pore , Myocytes, Cardiac/cytology , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Reactive Oxygen Species/metabolism , Sarcoglycans/genetics
17.
Circ Res ; 105(3): 239-48, 2009 Jul 31.
Article in English | MEDLINE | ID: mdl-19590044

ABSTRACT

RATIONALE: Mutations in the MYBPC3 gene encoding cardiac myosin-binding protein (cMyBP)-C are frequent causes of hypertrophic cardiomyopathy, but the mechanisms leading from mutations to disease remain elusive. OBJECTIVE: The goal of the present study was therefore to gain insights into the mechanisms controlling the expression of MYBPC3 mutations. METHODS AND RESULTS: We developed a cMyBP-C knock-in mouse carrying a point mutation. The level of total cMyBP-C mRNAs was 50% and 80% lower in heterozygotes and homozygotes, respectively. Surprisingly, the single G>A transition on the last nucleotide of exon 6 resulted in 3 different mutant mRNAs: missense (exchange of G for A), nonsense (exon skipping, frameshift, and premature stop codon) and deletion/insertion (as nonsense but with additional partial retention of downstream intron, restoring of the reading frame, and almost full-length protein). Inhibition of nonsense-mediated mRNA decay in cultured cardiac myocytes or in vivo with emetine or cycloheximide increased the level of nonsense mRNAs severalfold but not of the other mRNAs. By using sequential protein fractionation and a new antibody directed against novel amino acids produced by the frameshift, we showed that inhibition of the proteasome with epoxomicin via osmotic minipumps increased the level of (near) full-length mutants but not of truncated proteins. Homozygotes exhibited myocyte and left ventricular hypertrophy, reduced fractional shortening, and interstitial fibrosis; heterozygotes had no major phenotype. CONCLUSIONS: These data reveal (1) an unanticipated complexity of the expression of a single point mutation in the whole animal and (2) the involvement of both nonsense-mediated mRNA decay and the ubiquitin-proteasome system in lowering the level of mutant proteins.


Subject(s)
Carrier Proteins/genetics , Carrier Proteins/metabolism , Codon, Nonsense/genetics , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/metabolism , Proteasome Endopeptidase Complex/metabolism , RNA Stability/genetics , Ubiquitin/metabolism , Animals , Cells, Cultured , Cycloheximide/pharmacology , Disease Models, Animal , Emetine/pharmacology , Exons/genetics , Gene Knock-In Techniques , Homozygote , Mice , Mice, Mutant Strains , Mice, Transgenic , Muscle Cells/drug effects , Muscle Cells/metabolism , Muscle Cells/pathology , Point Mutation/genetics , Protein Synthesis Inhibitors/pharmacology
18.
Ann Neurol ; 65(6): 677-86, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19557870

ABSTRACT

OBJECTIVE: Mutations of the selenoprotein N gene (SEPN1) cause SEPN1-related myopathy (SEPN1-RM), a novel early-onset muscle disorder formerly divided into four different nosological categories. Selenoprotein N (SelN) is the only selenoprotein involved in a genetic disease; its function being unknown, no treatment is available for this potentially lethal disorder. Our objective was to clarify the role of SelN and the pathophysiology of SEPN1-RM to identify therapeutic targets. METHODS: We established and analyzed an ex vivo model of SelN deficiency using fibroblast and myoblast primary cultures from patients with null SEPN1 mutations. DCFH assay, OxyBlot, Western blot, Fura-2, and cell survival studies were performed to measure intracellular oxidant activity, oxidative stress markers, calcium handling, and response to exogenous treatments. RESULTS: SelN-depleted cells showed oxidative/nitrosative stress manifested by increased intracellular oxidant activity (reactive oxygen species and nitric oxide) and/or excessive oxidation of proteins, including the contractile proteins actin and myosin heavy chain II in myotubes. SelN-devoid myotubes showed also Ca(2+) homeostasis abnormalities suggesting dysfunction of the redox-sensor Ca(2+) channel ryanodine receptor type 1. Furthermore, absence of SelN was associated with abnormal susceptibility to H(2)O(2)-induced oxidative stress, demonstrated by increased cell death. This cell phenotype was restored by pretreatment with the antioxidant N-acetylcysteine. INTERPRETATION: SelN plays a key role in redox homeostasis and human cell protection against oxidative stress. Oxidative/nitrosative stress is a primary pathogenic mechanism in SEPN1-RM, which can be effectively targeted ex vivo by antioxidants. These findings pave the way to SEPN1-RM treatment, which would represent a first specific pharmacological treatment for a congenital myopathy.


Subject(s)
Antioxidants/therapeutic use , Muscle Proteins/physiology , Muscular Diseases/physiopathology , Muscular Diseases/therapy , Oxidative Stress , Selenoproteins/physiology , Adolescent , Cells, Cultured , Child , Child, Preschool , Female , Gene Targeting , Homeostasis/genetics , Humans , Male , Muscle Proteins/deficiency , Muscle Proteins/genetics , Muscular Diseases/metabolism , Muscular Diseases/pathology , Mutation/genetics , Oxidation-Reduction , Oxidative Stress/genetics , Selenoproteins/deficiency , Selenoproteins/genetics
19.
J Appl Physiol (1985) ; 106(4): 1311-24, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19131478

ABSTRACT

The phosphodiesterases inhibitor pentoxifylline gained attention for Duchenne muscular dystrophy therapy for its claimed anti-inflammatory, antioxidant, and antifibrotic action. A recent finding also showed that pentoxifylline counteracts the abnormal overactivity of a voltage-independent calcium channel in myofibers of dystrophic mdx mice. The possible link between workload, altered calcium homeostasis, and oxidative stress pushed toward a more detailed investigation. Thus a 4- to 8-wk treatment with pentoxifylline (50 mg x kg(-1) x day(-1) ip) was performed in mdx mice, undergoing or not a chronic exercise on treadmill. In vivo, the treatment partially increased forelimb strength and enhanced resistance to treadmill running in exercised animals. Ex vivo, pentoxifylline restored the mechanical threshold, an electrophysiological index of calcium homeostasis, and reduced resting cytosolic calcium in extensor digitorum longus muscle fibers. Mn quenching and patch-clamp technique confirmed that this effect was paralleled by a drug-induced reduction of membrane permeability to calcium. The treatment also significantly enhanced isometric tetanic tension in mdx diaphragm. The plasma levels of creatine kinase and reactive oxygen species were both significantly reduced in treated-exercised animals. Dihydroethidium staining, used as an indicator of reactive oxygen species production, showed that pentoxifylline significantly reduced the exercise-induced increase in fluorescence in the mdx tibialis anterior muscle. A significant decrease in connective tissue area and profibrotic cytokine transforming growth factor-beta(1) was solely found in tibialis anterior muscle. In both diaphragm and gastrocnemius muscle, a significant increase in neural cell adhesion molecule-positive area was instead observed. This data supports the interest toward pentoxifylline and allows insight in the level of cross talk between pathogenetic events in workloaded dystrophic muscle.


Subject(s)
Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscular Dystrophy, Animal/pathology , Pentoxifylline/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Animals , Calcium/metabolism , Creatine Kinase/metabolism , Electrophysiology , Fluorescent Dyes , Fura-2 , Immunohistochemistry , Isometric Contraction/physiology , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Microelectrodes , Muscle Contraction/drug effects , Muscle Contraction/physiology , Muscle Fibers, Skeletal/pathology , Patch-Clamp Techniques , Physical Conditioning, Animal/physiology , Reactive Oxygen Species/metabolism
20.
Neurobiol Dis ; 21(2): 372-80, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16153853

ABSTRACT

The mechanisms by which aging induces muscle impairment are not well understood yet. We studied the impact of aging on Ca2+ homeostasis in the slow-twitch soleus and the fast-twitch extensor digitorum longus (EDL) muscles of aged rats by using the fura-2 fluorescent probe. In both muscles aging increases the resting cytosolic calcium concentration ([Ca2+]i). This effect was independent on calcium influx since a reduced resting permeability of sarcolemma to divalent cations was observed in aged muscles likely due to a reduced activity of leak channels. Importantly the effects of aging on resting [Ca2+]i, fiber diameter, mechanical threshold and sarcolemmal resting conductances were less pronounced in the soleus muscle, suggesting that muscle impairment may be less dependent on [Ca2+]i in the slow-twitch muscle. The treatment of aged rats with growth hormone restored the resting [Ca2+]i toward adult values in both muscles. Thus, an increase of resting [Ca2+]i may contribute to muscle weakness associated with aging and may be considered for developing new therapeutic strategies in the elderly.


Subject(s)
Aging , Calcium/metabolism , Growth Hormone/pharmacology , Homeostasis/physiology , Muscle, Skeletal/physiology , Animals , Fura-2/metabolism , Male , Muscle, Skeletal/drug effects , Patch-Clamp Techniques , Permeability , Rats , Rats, Wistar , Sarcolemma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...