Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Chim Acta ; 553: 117711, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38101467

ABSTRACT

BACKGROUND: Research on circulating mitochondrial DNA (cir-mtDNA) based diagnostic is insufficient, as to its function, origin, structural features, and particularly its standardization of isolation. To date, plasma preparation performed in previous studies do not take into consideration the potential bias resulting from the release of mitochondria by activated platelets. METHODS: To tackle this, we compared the mtDNA amount determined by a standard plasma preparation method or a method optimally avoiding platelet activation. MtDNA extracted from the plasma of seven healthy individuals was quantified by Q-PCR in the course of the process of both methods submitted to filtration, freezing or differential centrifugation. RESULTS: 98.7 to 99.4% of plasma mtDNA corresponded to extracellular mitochondria, either free or into large extracellular vesicles. Without platelet activation, the proportion of both types of entities remained preponderant (76-80%), but the amount of detected mtDNA decreased 67-fold. CONCLUSION: We show the high capacity of platelets to release free mitochondria in "in vitro" conditions. This represents a potent confounding factor when extracting mtDNA for cir-mtDNA investigation. Platelet activation during pre-analytical conditions should therefore be avoided when studying cir-mtDNA. Our findings lead to a profound revision of the assumptions previously made by most works in this field. Overall, our data suggest the need to characterize or isolate mtDNA associated various structural forms, as well as to standardize plasma preparation, to better circumscribe cir-mtDNA's diagnostic capacity.


Subject(s)
Cell-Free Nucleic Acids , DNA, Mitochondrial , Humans , DNA, Mitochondrial/genetics , Mitochondria/genetics , Blood Platelets/chemistry , Platelet Activation
2.
Sci Rep ; 13(1): 2739, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36792801

ABSTRACT

Optimizing the biomarker combination to be analyzed in liquid biopsies should improve personalized medicine. We developed a method to purify circulating cell-free mRNAs from plasma samples and to quantify them by RT-qPCR. We selected three candidate colorectal cancer biomarkers (B2M, TIMP-1, and CLU). Their mRNA levels were significantly higher in plasma of patients with metastatic colorectal cancer patients (mCRC) (n = 107) than in healthy individuals (HI) (n = 53). To increase the discriminating performance of our method, we analyzed the sum of the three mRNA levels (BTC index). The area under the ROC curve (AUC) to estimate the BTC index capacity to discriminate between mCRC and HI plasma was 0.903. We also determined the optimal BTC index cut-off to distinguish between plasma samples, with 82% of sensitivity and 93% of specificity. By using mRNA as a novel liquid biopsy analytical parameter, our method has the potential to facilitate rapid screening of CRCm.


Subject(s)
Colorectal Neoplasms , Humans , RNA, Messenger/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Biomarkers, Tumor/genetics , ROC Curve
3.
J Cell Biol ; 217(3): 1047-1062, 2018 03 05.
Article in English | MEDLINE | ID: mdl-29326287

ABSTRACT

During development, cell numbers are tightly regulated, ensuring that tissues and organs reach their correct size and shape. Recent evidence has highlighted the intricate connections between the cytoskeleton and the regulation of the key growth control Hippo pathway. Looking for apical scaffolds regulating tissue growth, we describe that Drosophila melanogaster big bang (Bbg), a poorly characterized multi-PDZ scaffold, controls epithelial tissue growth without affecting epithelial polarity and architecture. bbg-mutant tissues are smaller, with fewer cells that are less apically constricted than normal. We show that Bbg binds to and colocalizes tightly with the ß-heavy-Spectrin/Kst subunit at the apical cortex and promotes Yki activity, F-actin enrichment, and the phosphorylation of the myosin II regulatory light chain Spaghetti squash. We propose a model in which the spectrin cytoskeleton recruits Bbg to the cortex, where Bbg promotes actomyosin contractility to regulate epithelial tissue growth.


Subject(s)
Drosophila Proteins/metabolism , Imaginal Discs/embryology , Models, Biological , Mutation , Wings, Animal/embryology , Animals , Drosophila Proteins/genetics , Drosophila melanogaster , Imaginal Discs/cytology , Wings, Animal/cytology
SELECTION OF CITATIONS
SEARCH DETAIL