Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Toxins (Basel) ; 15(11)2023 10 27.
Article in English | MEDLINE | ID: mdl-37999493

ABSTRACT

The first ciguatera fish poisoning (CFP) in Portugal dates from 2008 when 11 people reported CFP symptoms after consuming a 30 kg amberjack caught around the Selvagens Islands (Madeira Archipelago). Since then, 49 human poisonings have been reported. The emergence of a new threat challenged scientists and regulators, as methods for toxic microalgae analyses and ciguatoxin (CTX) detection were not implemented. To minimise the risk of ciguatera, the Madeira Archipelago authorities interdicted fisheries in Selvagens Islands and banned the capture of amberjacks weighing more than 10 kg in the entire region of Madeira Archipelago. The accurate identification and quantification of the benthic toxin-producing algae species spreading to new areas require efforts in terms of both microscopy and molecular techniques. Two ciguatera-causing dinoflagellates, Gambierdiscus excentricus and Gambierdiscus australes, were identified in the Madeira Island and Selvagens sub-archipelago, respectively. Regarding the CTX analysis (N2a cell-based assay and LC-MS) in fish, the results indicate that the Selvagens Islands are a ciguatera risk area and that fish vectoring CTX are not limited to top predator species. Nevertheless, advances and improvements in screening methods for the fast detection of toxicity in seafood along with certified reference material and sensitive and selective targeted analytical methods for the determination of CTX content are still pending. This study aims to revise the occurrence of ciguatera cases in the Madeira Archipelago since its first detection in 2008, to discuss the risk management strategy that was implemented, and to provide a summary of the available data on the bioaccumulation of CTX in marine fish throughout the marine food web, taking into consideration their ecological significance, ecosystem dynamics, and fisheries relevance.


Subject(s)
Ciguatera Poisoning , Ciguatoxins , Dinoflagellida , Animals , Humans , Ciguatera Poisoning/epidemiology , Portugal/epidemiology , Ecosystem , Retrospective Studies , Ciguatoxins/toxicity , Ciguatoxins/analysis , Fishes
2.
Gigascience ; 9(1)2020 01 01.
Article in English | MEDLINE | ID: mdl-31942620

ABSTRACT

BACKGROUND: The giant squid (Architeuthis dux; Steenstrup, 1857) is an enigmatic giant mollusc with a circumglobal distribution in the deep ocean, except in the high Arctic and Antarctic waters. The elusiveness of the species makes it difficult to study. Thus, having a genome assembled for this deep-sea-dwelling species will allow several pending evolutionary questions to be unlocked. FINDINGS: We present a draft genome assembly that includes 200 Gb of Illumina reads, 4 Gb of Moleculo synthetic long reads, and 108 Gb of Chicago libraries, with a final size matching the estimated genome size of 2.7 Gb, and a scaffold N50 of 4.8 Mb. We also present an alternative assembly including 27 Gb raw reads generated using the Pacific Biosciences platform. In addition, we sequenced the proteome of the same individual and RNA from 3 different tissue types from 3 other species of squid (Onychoteuthis banksii, Dosidicus gigas, and Sthenoteuthis oualaniensis) to assist genome annotation. We annotated 33,406 protein-coding genes supported by evidence, and the genome completeness estimated by BUSCO reached 92%. Repetitive regions cover 49.17% of the genome. CONCLUSIONS: This annotated draft genome of A. dux provides a critical resource to investigate the unique traits of this species, including its gigantism and key adaptations to deep-sea environments.


Subject(s)
Decapodiformes/genetics , Genome , Genomics , Animals , Biological Evolution , Chromatography, Liquid , Computational Biology/methods , DNA Transposable Elements , Gene Expression Profiling , Genomics/methods , Molecular Sequence Annotation , Multigene Family , RNA, Untranslated , Tandem Mass Spectrometry , Transcriptome , Whole Genome Sequencing
3.
J Appl Phycol ; 30(3): 1437-1451, 2018.
Article in English | MEDLINE | ID: mdl-29899596

ABSTRACT

Cyanobacteria are a well-known source of bioproducts which renders culturable strains a valuable resource for biotechnology purposes. We describe here the establishment of a cyanobacterial culture collection (CC) and present the first version of the strain catalog and its online database (http://lege.ciimar.up.pt/). The LEGE CC holds 386 strains, mainly collected in coastal (48%), estuarine (11%), and fresh (34%) water bodies, for the most part from Portugal (84%). By following the most recent taxonomic classification, LEGE CC strains were classified into at least 46 genera from six orders (41% belong to the Synechococcales), several of them are unique among the phylogenetic diversity of the cyanobacteria. For all strains, primary data were obtained and secondary data were surveyed and reviewed, which can be reached through the strain sheets either in the catalog or in the online database. An overview on the notable biodiversity of LEGE CC strains is showcased, including a searchable phylogenetic tree and images for all strains. With this work, 80% of the LEGE CC strains have now their 16S rRNA gene sequences deposited in GenBank. Also, based in primary data, it is demonstrated that several LEGE CC strains are a promising source of extracellular polymeric substances (EPS). Through a review of previously published data, it is exposed that LEGE CC strains have the potential or actual capacity to produce a variety of biotechnologically interesting compounds, including common cyanotoxins or unprecedented bioactive molecules. Phylogenetic diversity of LEGE CC strains does not entirely reflect chemodiversity. Further bioprospecting should, therefore, account for strain specificity of the valuable cyanobacterial holdings of LEGE CC.

4.
Protein J ; 36(2): 77-97, 2017 04.
Article in English | MEDLINE | ID: mdl-28258523

ABSTRACT

Pelagia noctiluca is the most venomous jellyfish in the Mediterranean Sea where it forms dense blooms. Although there is several published research on this species, until now none of the works has been focused on a complete protein profile of the all body constituents of this organism. Here, we have performed a detailed proteomics characterization of the major protein components expressed by P. noctiluca. With that aim, we have considered the study of jellyfish proteins involved in defense, body constituents and metabolism, and furthered explore the significance and potential application of such bioactive molecules. P. noctiluca body proteins were separated by1D SDS-PAGE and 2DE followed by characterization by nanoLC-MS/MS and MALDI-TOF/TOF techniques. Altogether, both methods revealed 68 different proteins, including a Zinc Metalloproteinase, a Red Fluorescent Protein (RFP) and a Peroxiredoxin. These three proteins were identified for the first time in P. noctiluca. Zinc Metalloproteinase was previously reported in the venom of other jellyfish species. Besides the proteins described above, the other 65 proteins found in P. noctiluca body content were identified and associated with its clinical significance. Among all the proteins identified in this work we highlight: Zinc metalloproteinase, which has a ShK toxin domain and therefore should be implicated in the sting toxicity of P. noctiluca.; the RFP which are a very important family of proteins due to its possible application as molecular markers; and last but not least the discovery of a Peroxiredoxin in this organism makes it a new natural resource of antioxidant and anti-UV radiation agents.


Subject(s)
Luminescent Proteins/analysis , Metalloproteases/analysis , Peroxiredoxins/analysis , Proteome/analysis , Scyphozoa/metabolism , Animals , Cnidarian Venoms/analysis , Cnidarian Venoms/chemistry , Electrophoresis , Luminescent Proteins/chemistry , Luminescent Proteins/metabolism , Mediterranean Sea , Metalloproteases/chemistry , Metalloproteases/metabolism , Peroxiredoxins/chemistry , Peroxiredoxins/metabolism , Protein Domains , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Zinc , Red Fluorescent Protein
5.
Mar Genomics ; 31: 1-8, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27650377

ABSTRACT

Marine ecosystems occupy 71% of the surface of our planet, yet we know little about their diversity. Although the inventory of species is continually increasing, as registered by the Census of Marine Life program, only about 10% of the estimated two million marine species are known. This lag between observed and estimated diversity is in part due to the elusiveness of most aquatic species and the technical difficulties of exploring extreme environments, as for instance the abyssal plains and polar waters. In the last decade, the rapid development of affordable and flexible high-throughput sequencing approaches have been helping to improve our knowledge of marine biodiversity, from the rich microbial biota that forms the base of the tree of life to a wealth of plant and animal species. In this review, we present an overview of the applications of genomics to the study of marine life, from evolutionary biology of non-model organisms to species of commercial relevance for fishing, aquaculture and biomedicine. Instead of providing an exhaustive list of available genomic data, we rather set to present contextualized examples that best represent the current status of the field of marine genomics.


Subject(s)
Aquaculture , Aquatic Organisms/genetics , Biological Evolution , Fisheries , Genomics , Oceans and Seas
6.
Mar Drugs ; 14(4)2016 Apr 12.
Article in English | MEDLINE | ID: mdl-27077869

ABSTRACT

The study of bioactive compounds from marine animals has provided, over time, an endless source of interesting molecules. Jellyfish are commonly targets of study due to their toxic proteins. However, there is a gap in reviewing successful wet-lab methods employed in these animals, which compromises the fast progress in the detection of related biomolecules. Here, we provide a compilation of the most effective wet-lab methodologies for jellyfish venom extraction prior to proteomic analysis-separation, identification and toxicity assays. This includes SDS-PAGE, 2DE, gel chromatography, HPLC, DEAE, LC-MS, MALDI, Western blot, hemolytic assay, antimicrobial assay and protease activity assay. For a more comprehensive approach, jellyfish toxicity studies should further consider transcriptome sequencing. We reviewed such methodologies and other genomic techniques used prior to the deep sequencing of transcripts, including RNA extraction, construction of cDNA libraries and RACE. Overall, we provide an overview of the most promising methods and their successful implementation for optimizing time and effort when studying jellyfish.


Subject(s)
Biological Factors/genetics , Biological Factors/metabolism , Cnidarian Venoms/genetics , Genomics/methods , Proteomics/methods , Scyphozoa/genetics , Animals , Gene Library , Humans
7.
Mar Drugs ; 10(8): 1812-1851, 2012 Aug.
Article in English | MEDLINE | ID: mdl-23015776

ABSTRACT

The Cnidaria phylum includes organisms that are among the most venomous animals. The Anthozoa class includes sea anemones, hard corals, soft corals and sea pens. The composition of cnidarian venoms is not known in detail, but they appear to contain a variety of compounds. Currently around 250 of those compounds have been identified (peptides, proteins, enzymes and proteinase inhibitors) and non-proteinaceous substances (purines, quaternary ammonium compounds, biogenic amines and betaines), but very few genes encoding toxins were described and only a few related protein three-dimensional structures are available. Toxins are used for prey acquisition, but also to deter potential predators (with neurotoxicity and cardiotoxicity effects) and even to fight territorial disputes. Cnidaria toxins have been identified on the nematocysts located on the tentacles, acrorhagi and acontia, and in the mucous coat that covers the animal body. Sea anemone toxins comprise mainly proteins and peptides that are cytolytic or neurotoxic with its potency varying with the structure and site of action and are efficient in targeting different animals, such as insects, crustaceans and vertebrates. Sea anemones toxins include voltage-gated Na⁺ and K⁺ channels toxins, acid-sensing ion channel toxins, Cytolysins, toxins with Kunitz-type protease inhibitors activity and toxins with Phospholipase A2 activity. In this review we assessed the phylogentic relationships of sea anemone toxins, characterized such toxins, the genes encoding them and the toxins three-dimensional structures, further providing a state-of-the-art description of the procedures involved in the isolation and purification of bioactive toxins.


Subject(s)
Marine Toxins/isolation & purification , Sea Anemones/chemistry , Animals , Marine Toxins/chemistry , Marine Toxins/toxicity , Phylogeny
8.
Syst Appl Microbiol ; 35(2): 110-9, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22277323

ABSTRACT

Cyanobacteria are important primary producers, and many are able to fix atmospheric nitrogen playing a key role in the marine environment. However, not much is known about the diversity of cyanobacteria in Portuguese marine waters. This paper describes the diversity of 60 strains isolated from benthic habitats in 9 sites (intertidal zones) on the Portuguese South and West coasts. The strains were characterized by a morphological study (light and electron microscopy) and by a molecular characterization (partial 16S rRNA, nifH, nifK, mcyA, mcyE/ndaF, sxtI genes). The morphological analyses revealed 35 morphotypes (15 genera and 16 species) belonging to 4 cyanobacterial Orders/Subsections. The dominant groups among the isolates were the Oscillatoriales. There is a broad congruence between morphological and molecular assignments. The 16S rRNA gene sequences of 9 strains have less than 97% similarity compared to the sequences in the databases, revealing novel cyanobacterial diversity. Phylogenetic analysis, based on partial 16S rRNA gene sequences showed at least 12 clusters. One-third of the isolates are potential N(2)-fixers, as they exhibit heterocysts or the presence of nif genes was demonstrated by PCR. Additionally, no conventional freshwater toxins genes were detected by PCR screening.


Subject(s)
Cyanobacteria/classification , Cyanobacteria/genetics , Aquatic Organisms/classification , Aquatic Organisms/genetics , Aquatic Organisms/isolation & purification , Atlantic Ocean , Bacterial Proteins/genetics , Base Sequence , Cyanobacteria/isolation & purification , DNA, Bacterial/analysis , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Genetic Variation , Molecular Sequence Data , Nitrogen Fixation , Oxidoreductases/genetics , Phylogeny , Portugal , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Sequence Analysis, DNA
9.
Mar Drugs ; 8(6): 1908-19, 2010 Jun 21.
Article in English | MEDLINE | ID: mdl-20631874

ABSTRACT

Eight marine cyanobacteria strains of the genera Cyanobium, Leptolyngbya, Oscillatoria, Phormidium, and Synechococcus were isolated from rocky beaches along the Atlantic Portuguese central coast and tested for ecotoxicity. Strains were identified by morphological characteristics and by the amplification and sequentiation of the 16S rDNA. Bioactivity of dichloromethane, methanol and aqueous extracts was assessed by the Artemia salina bioassay. Peptide toxin production was screened by matrix assisted laser desorption/ionization time of flight mass spectrometry. Molecular analysis of the genes involved in the production of known cyanotoxins such as microcystins, nodularins and cylindrospermopsin was also performed. Strains were toxic to the brine shrimp A. salina nauplii with aqueous extracts being more toxic than the organic ones. Although mass spectrometry analysis did not reveal the production of microcystins or other known toxic peptides, a positive result for the presence of mcyE gene was found in one Leptolyngbya strain and one Oscillatoria strain. The extensive brine shrimp mortality points to the involvement of other unknown toxins, and the presence of a fragment of genes involved in the cyanotoxin production highlight the potential risk of cyanobacteria occurrence on the Atlantic coast.


Subject(s)
Bacterial Toxins/metabolism , Bacterial Toxins/toxicity , Cyanobacteria/metabolism , Marine Toxins/metabolism , Marine Toxins/toxicity , Phytoplankton/metabolism , Seawater/microbiology , Alkaloids , Animals , Artemia/drug effects , Atlantic Ocean , Bacterial Toxins/genetics , Cyanobacteria/classification , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , Cyanobacteria Toxins , DNA, Bacterial/isolation & purification , DNA, Bacterial/metabolism , Larva/drug effects , Lethal Dose 50 , Marine Toxins/genetics , Microcystins/genetics , Microcystins/metabolism , Peptides, Cyclic/genetics , Peptides, Cyclic/metabolism , Phytoplankton/classification , Phytoplankton/genetics , Phytoplankton/isolation & purification , Polymerase Chain Reaction , Portugal , RNA, Ribosomal, 16S/genetics , Species Specificity , Toxicity Tests , Uracil/analogs & derivatives , Uracil/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...