Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 15: 1357797, 2024.
Article in English | MEDLINE | ID: mdl-38463486

ABSTRACT

Plant microbiomes are known to serve several important functions for their host, and it is therefore important to understand their composition as well as the factors that may influence these microbial communities. The microbiome of Thalassia testudinum has only recently been explored, and studies to-date have primarily focused on characterizing the microbiome of plants in a single region. Here, we present the first characterization of the composition of the microbial communities of T. testudinum across a wide geographical range spanning three distinct regions with varying physicochemical conditions. We collected samples of leaves, roots, sediment, and water from six sites throughout the Atlantic Ocean, Caribbean Sea, and the Gulf of Mexico. We then analyzed these samples using 16S rRNA amplicon sequencing. We found that site and region can influence the microbial communities of T. testudinum, while maintaining a plant-associated core microbiome. A comprehensive comparison of available microbial community data from T. testudinum studies determined a core microbiome composed of 14 ASVs that consisted mostly of the family Rhodobacteraceae. The most abundant genera in the microbial communities included organisms with possible plant-beneficial functions, like plant-growth promoting taxa, disease suppressing taxa, and nitrogen fixers.

2.
Nat Ecol Evol ; 8(4): 663-675, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38366132

ABSTRACT

Climate change is altering the functioning of foundational ecosystems. While the direct effects of warming are expected to influence individual species, the indirect effects of warming on species interactions remain poorly understood. In marine systems, as tropical herbivores undergo poleward range expansion, they may change food web structure and alter the functioning of key habitats. While this process ('tropicalization') has been documented within declining kelp forests, we have a limited understanding of how this process might unfold across other systems. Here we use a network of sites spanning 23° of latitude to explore the effects of increased herbivory (simulated via leaf clipping) on the structure of a foundational marine plant (turtlegrass). By working across its geographic range, we also show how gradients in light, temperature and nutrients modified plant responses. We found that turtlegrass near its northern boundary was increasingly affected (reduced productivity) by herbivory and that this response was driven by latitudinal gradients in light (low insolation at high latitudes). By contrast, low-latitude meadows tolerated herbivory due to high insolation which enhanced plant carbohydrates. We show that as herbivores undergo range expansion, turtlegrass meadows at their northern limit display reduced resilience and may be under threat of ecological collapse.


Subject(s)
Ecosystem , Herbivory , Food Chain , Forests , Climate Change , Plants
3.
Mar Pollut Bull ; 198: 115840, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043206

ABSTRACT

An emergency discharge of nutrient-rich effluent from the defunct Piney Point fertilizer stack into Tampa Bay at Port Manatee occurred from 30 March-8 April 2021. This resulted in a pollutant plume that evolved over time and space across the entire bay, including its environmentally sensitive marine preserves, and out onto the adjacent continental shelf. As a rapid response to environmental concerns, the plume evolution was simulated using the high resolution, unstructured grid, Tampa Bay Coastal Ocean Model (TBCOM) nowcast/forecast system, with an embedded tracer module that included realistic point discharge rates. Normalized tracer distributions were automatically updated each day, providing 1-day hindcasts and 3.5-day forecasts. Due to mixing and advection, tracer concentration was quickly reduced by two or more orders of magnitude as the plume spread out. Highest tracer concentrations hugged the southeastern Tampa Bay shoreline during the first week. Lower tracer concentrations were gradually advected to the western side of Tampa Bay, and the tracer was slowly flushed out of the bay to be transported primarily northward along the coast. The modeled plume evolution served as principal guidance for coordinating environmental monitoring by state, local and academic personnel. The model results also provide a basis for future multidisciplinary studies.


Subject(s)
Bays , Environmental Pollutants , Forecasting , Environmental Monitoring
4.
PeerJ ; 11: e16264, 2023.
Article in English | MEDLINE | ID: mdl-38025680

ABSTRACT

On Caribbean coral reefs, losses of two key groups of grazers, herbivorous fishes and Diadema antillarum, coincided with dramatic increases in macroalgae, which have contributed to decreases in the resilience of these coral reefs and continued low coral cover. In some locations, herbivorous reef fishes and D. antillarum populations have begun to recover, and reductions in macroalgal cover and abundance have followed. Harder to determine, and perhaps more important, are the combined grazing effects of herbivorous fishes and D. antillarum on the structure of macroalgal communities. Surprisingly few studies have examined the feeding preferences of D. antillarum for different macroalgal species, and there have been even fewer comparative studies between these different herbivore types. Accordingly, a series of in-situ and ex-situ feeding assays involving herbivorous fishes and D. antillarum were used to examine feeding preferences. Ten macrophytes representing palatable and chemically and/or structurally defended species were used in these assays, including nine macroalgae, and one seagrass. All species were eaten by at least one of the herbivores tested, although consumption varied greatly. All herbivores consumed significant portions of two red algae species while avoiding Halimeda tuna, which has both chemical and structural defenses. Herbivorous fishes mostly avoided chemically defended species while D. antillarum consumed less of the structurally defended algae. These results suggest complementarity and redundancy in feeding by these different types of herbivores indicating the most effective macroalgal control and subsequent restoration of degraded coral reefs may depend on the recovery of both herbivorous fishes and D. antillarum.


Subject(s)
Alligators and Crocodiles , Seaweed , Animals , Herbivory , Coral Reefs , Sea Urchins , Fishes
5.
PeerJ ; 11: e15170, 2023.
Article in English | MEDLINE | ID: mdl-37361046

ABSTRACT

Background: Coral diseases are one of the leading causes of declines in coral populations. In the Caribbean, white band disease (WBD) has led to a substantial loss of Acropora corals. Although the etiologies of this disease have not been well described, characterizing the coral microbiome during the transition from a healthy to diseased state is critical for understanding disease progression. Coral nurseries provide unique opportunities to further understand the microbial changes associated with diseased and healthy corals, because corals are monitored over time. We characterized the microbiomes before and during an outbreak of WBD in Acropora cervicornis reared in an ocean nursery in Little Cayman, CI. We asked (1) do healthy corals show the same microbiome over time (before and during a disease outbreak) and (2) are there disease signatures on both lesioned and apparently healthy tissues on diseased coral colonies? Methods: Microbial mucus-tissue slurries were collected from healthy coral colonies in 2017 (before the disease) and 2019 (during the disease onset). Diseased colonies were sampled at two separate locations on an individual coral colony: at the interface of Disease and ∼10 cm away on Apparently Healthy coral tissue. We sequenced the V4 region of the 16S rRNA gene to characterize bacterial and archaeal community composition in nursery-reared A. cervicornis. We assessed alpha diversity, beta diversity, and compositional differences to determine differences in microbial assemblages across health states (2019) and healthy corals between years (2017 and 2019). Results: Microbial communities from healthy A. cervicornis from 2017 (before disease) and 2019 (after disease) did not differ significantly. Additionally, microbial communities from Apparently Healthy samples on an otherwise diseased coral colony were more similar to Healthy colonies than to the diseased portion on the same colony for both alpha diversity and community composition. Microbial communities from Diseased tissues had significantly higher alpha diversity than both Healthy and Apparently Healthy tissues but showed no significant difference in beta-diversity dispersion. Our results show that at the population scale, Healthy and Apparently Healthy coral tissues are distinct from microbial communities associated with Diseased tissues. Furthermore, our results suggest stability in Little Cayman nursery coral microbiomes over time. We show healthy Caymanian nursery corals had a stable microbiome over a two-year period, an important benchmark for evaluating coral health via their microbiome.


Subject(s)
Anthozoa , Animals , Anthozoa/genetics , Coral Reefs , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Caribbean Region
6.
Sci Rep ; 12(1): 19286, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36369337

ABSTRACT

Marine infectious diseases are a leading cause of population declines globally due, in large part, to challenges in diagnosis and limited treatment options. Mitigating disease spread is particularly important for species targeted for conservation. In some systems, strategic arrangement of organisms in space can constrain disease outbreaks, however, this approach has not been used in marine restoration. Reef building corals have been particularly devastated by disease and continue to experience catastrophic population declines. We show that mixtures of genotypes (i.e., diversity) increased disease resistance in the critically endangered Acropora cervicornis, a species that is frequently targeted for restoration of degraded reefs in the broader Caribbean region. This finding suggests a more generalized relationship between diversity and disease and offers a viable strategy for mitigating the spread of infectious diseases in corals that likely applies to other foundation species targeted for restoration.


Subject(s)
Anthozoa , Animals , Anthozoa/genetics , Endangered Species , Disease Resistance/genetics , Genotype , Caribbean Region , Coral Reefs
7.
Genetica ; 150(6): 327-341, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36271978

ABSTRACT

The coastal waters of Cuba are home to a small, endangered population of West Indian manatee, which would benefit from a comprehensive characterization of the population's genetic variation. We conducted the first genetic assessment of Cuban manatees to determine the extent of the population's genetic structure and characterize the neutral genetic diversity among regions within the archipelago. We genotyped 49 manatees at 18 microsatellite loci, a subset of 27 samples on 1703 single nucleotide polymorphisms (SNPs), and sequenced 59 manatees at the mitochondrial control region. The Cuba manatee population had low nuclear (microsatellites HE = 0.44, and SNP HE = 0.29) and mitochondrial genetic diversity (h = 0.068 and π = 0.00025), and displayed moderate departures from random mating (microsatellite FIS = 0.12, SNP FIS = 0.10). Our results suggest that the western portion of the archipelago undergoes periodic exchange of alleles based on the evidence of shared ancestry and low but significant differentiation. The southeast Guantanamo Bay region and the western portion of the archipelago were more differentiated than southwest and northwest manatees. The genetic distinctiveness observed in the southeast supports its recognition as a demographically independent unit for natural resource management regardless of whether it is due to historical isolation or isolation by distance. Estimates of the regional effective population sizes, with the microsatellite and SNP datasets, were small (all Ne < 60). Subsequent analyses using additional samples could better examine how the observed structure is masking simple isolation by distance patterns or whether ecological or biogeographic forces shape genetic patterns.


Subject(s)
Trichechus manatus , Animals , Trichechus manatus/genetics , Cuba , Microsatellite Repeats , Trichechus/genetics , Genetic Variation , Genetics, Population
8.
PeerJ ; 8: e9635, 2020.
Article in English | MEDLINE | ID: mdl-32913671

ABSTRACT

BACKGROUND: The architecturally important coral species Acropora cervicornis and A. palmata were historically common in the Caribbean, but have declined precipitously since the early 1980s. Substantial resources are currently being dedicated to coral gardening and the subsequent outplanting of asexually reproduced colonies of Acropora, activities that provide abundant biomass for both restoration efforts and for experimental studies to better understand the ecology of these critically endangered coral species. METHODS: We characterized the bacterial and archaeal community composition of A. cervicornis corals in a Caribbean nursery to determine the heterogeneity of the microbiome within and among colonies. Samples were taken from three distinct locations (basal branch, intermediate branch, and branch tip) from colonies of three different coral genotypes. RESULTS: Overall, microbial community composition was similar among colonies due to high relative abundances of the Rickettsiales genus MD3-55 (Candidatus Aquarickettsia) in nearly all samples. While microbial communities were not different among locations within the same colony, they were significantly different between coral genotypes. These findings suggest that sampling from any one location on a coral host is likely to provide a representative sample of the microbial community for the entire colony. Our results also suggest that subtle differences in microbiome composition may be influenced by the coral host, where different coral genotypes host slightly different microbiomes. Finally, this study provides baseline data for future studies seeking to understand the microbiome of nursery-reared A. cervicornis and its roles in coral health, adaptability, and resilience.

9.
Front Microbiol ; 11: 822, 2020.
Article in English | MEDLINE | ID: mdl-32431680

ABSTRACT

The ability of some symbiotic cnidarians to resist and better withstand stress factors that cause bleaching is a trait that is receiving increased attention. The adaptive bleaching hypothesis postulates that cnidarians that can form a stable symbiosis with thermotolerant Symbiodiniaceae strains may cope better with increasing seawater temperatures. We used polyps of the scyphozoan, Cassiopea xamachana, as a model system to test symbiosis success under heat stress. We sought to determine: (1) if aposymbiotic C. xamachana polyps could establish and maintain a symbiosis with both native and non-native strains of Symbiodiniaceae that all exhibit different tolerances to heat, (2) whether polyps with these newly acquired Symbiodiniaceae strains would strobilate (produce ephyra), and (3) if thermally tolerant Symbiodiniaceae strains that established and maintained a symbiosis exhibited greater success in response to heat stress (even if they are not naturally occurring in Cassiopea). Following recolonization of aposymbiotic C. xamachana polyps with different strains, we found that: (1) strains Smic, Stri, Slin, and Spil all established a stable symbiosis that promoted strobilation and (2) strains Bmin1 and Bmin2 did not establish a stable symbiosis and strobilation did not occur. Strains Smic, Stri, Slin, and Spil were used in a subsequent bleaching experiment; each of the strains was introduced to a subset of aposymbiotic polyps and once polyp tissues were saturated with symbionts they were subjected to elevated temperatures - 32°C and 34°C - for 2 weeks. Our findings indicate that, in general, pairings of polyps with Symbiodiniaceae strains that are native to Cassiopea (Stri and Smic) performed better than a non-native strain (Slin) even though this strain has a high thermotolerance. This suggests a degree of partner specificity that may limit the adaptive potential of certain cnidarians to increased ocean warming. We also observed that the free-living, non-native thermotolerant strain Spil was relatively successful in resisting bleaching during experimental trials. This suggests that free-living Symbiodiniaceae may provide a supply of potentially "new" thermotolerant strains to cnidarians following a bleaching event.

10.
PLoS One ; 14(12): e0219236, 2019.
Article in English | MEDLINE | ID: mdl-31887115

ABSTRACT

Quantifying ecosystem-level processes that drive community structure and function is key to the development of effective environmental restoration and management programs. To assess the effects of large-scale aquatic vegetation loss on fish and invertebrate communities in Florida estuaries, we quantified and compared the food webs of two adjacent spring-fed rivers that flow into the Gulf of Mexico. We constructed a food web model using field-based estimates of community absolute biomass and trophic interactions of a highly productive vegetated river, and modeled long-term simulations of vascular plant decline coupled with seasonal production of filamentous macroalgae. We then compared ecosystem model predictions to observed community structure of the second river that has undergone extensive vegetative habitat loss, including extirpation of several vascular plant species. Alternative models incorporating bottom-up regulation (decreased primary production resulting from plant loss) versus coupled top-down effects (compensatory predator search efficiency) were ranked by total absolute error of model predictions compared to the empirical community observations. Our best model for predicting community responses to vascular plant loss incorporated coupled effects of decreased primary production (bottom-up), increased prey search efficiency of large-bodied fishes at low vascular plant density (top-down), and decreased prey search efficiency of small-bodied fishes with increased biomass of filamentous macroalgae (bottom-up). The results of this study indicate that the loss of vascular plants from the coastal river ecosystem may alter the food web structure and result in a net decline in the biomass of fishes. These results are highly relevant to ongoing landscape-level restoration programs intended to improve aesthetics and ecosystem function of coastal spring-fed rivers by highlighting how the structure of these communities can be regulated both by resource availability and consumption. Restoration programs will need to acknowledge and incorporate both to be successful.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Environmental Restoration and Remediation/methods , Animals , Biomass , Estuaries , Fishes/physiology , Florida , Food Chain , Gulf of Mexico , Invertebrates/physiology , Models, Theoretical , Plants , Rivers , Seasons
11.
Proc Biol Sci ; 286(1912): 20191861, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31575365

ABSTRACT

Ecological studies indicate that structurally complex habitats support elevated biodiversity, stability and resilience. The long-term persistence of structured habitats and their importance in maintaining biodiverse hotspots remain underexplored. We combined geohistorical data (dead mollusc assemblages, 'DA') and contemporary surveys (live mollusc assemblages, 'LA') to assess the persistence of local seagrass habitats over multi-centennial timescales and to evaluate whether they acted as long-term drivers of biodiversity, stability and resilience of associated fauna. We sampled structured seagrass meadows and open sandy bottoms along Florida's Gulf Coast. Results indicated that: (i) LA composition differed significantly between the two habitat types, (ii) LA from seagrass sites were characterized by significantly elevated local biodiversity and significantly higher spatial stability, (iii) DA composition differed significantly between the two habitat types, and (iv) fidelity between LA and DA was significantly greater for seagrass habitats. Contemporary results support the hypotheses that local biodiversity and spatial stability of marine benthos are both elevated in structured seagrass habitats. Geohistorical results suggest that structured habitats persist as local hotspots of elevated biodiversity and faunal stability over centennial-to-millennial timescales; indicating that habitat degradation and concomitant loss within structurally complex marine systems is a key driver of declining biodiversity and resilience.


Subject(s)
Aquatic Organisms/physiology , Biodiversity , Ecosystem , Animals , Florida , Grassland
12.
Endanger Species Res ; 38: 29-43, 2019.
Article in English | MEDLINE | ID: mdl-31105796

ABSTRACT

A decline in submerged aquatic vegetation (SAV) within Florida's spring-fed, thermal refuges raises questions about how these systems support winter foraging of Florida manatees (Trichechus manatus latirostris). We analyzed telemetry data for 12 manatees over seven years to assess their use of Kings Bay, a winter refuge with diminished SAV. After accounting for the effect of water temperature, we hypothesized that the number of trips out of Kings Bay would increase and the time wintering manatees spent in Kings Bay would decrease. Trips out of and into Kings Bay also were compared to assess potential influences on exiting or entering. There were no detectable differences in the number of trips out of the bay or overall time manatees spent in Kings Bay across winters. The percentage of time water temperatures were below 20°C was the single best predictor of increased time spent in Kings Bay. Trips out of Kings Bay were more likely to occur after 12:00 h and during a high but ebbing tide, compared to trips into the bay. Nine manatees tracked for longer than 75 days in winter spent 7-57% of their time in the Gulf of Mexico, and three of these manatees spent 7-65% of the winter >80 km from the mouth of Kings Bay. Results suggest the low amount of SAV in Kings Bay does not obviate its use by manatees, though there are likely tradeoffs for manatees regularly foraging elsewhere. Accounting for movements of Florida manatees through a network of habitats may improve management strategies and facilitate desirable conservation outcomes.

13.
J Environ Manage ; 186(Pt 1): 42-54, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27839845

ABSTRACT

Due to widespread and continuing seagrass loss, restoration attempts occur worldwide. This article presents a geospatial modeling technique that ranks the suitability of sites for restoration based on light availability and boating activity, two factors cited in global studies of seagrass loss and restoration failures. The model presented here was created for Estero Bay, Florida and is a predictive model of light availability and boating pressure to aid seagrass restoration efforts. The model is adaptive and can be parameterized for different locations and updated as additional data is collected and knowledge of how factors impact seagrass improves. Light data used for model development were collected over one year from 50 sites throughout the bay. Coupled with high resolution bathymetric data, bottom mean light availability was predicted throughout the bay. Data collection throughout the year also allowed for prediction of light variability at sites, a possible indicator of seagrass growth and survival. Additionally, survey data on boating activities were used to identify areas, outside of marked navigation channels, that receive substantial boating pressure and are likely poor candidate sites for seagrass restoration. The final map product identifies areas where the light environment was suitable for seagrasses and boating pressure was low. A composite map showing the persistence of seagrass coverage in the study area over four years, between 1999 and 2006, was used to validate the model. Eighty-nine percent of the area where seagrass persisted (had been mapped all four years) was ranked as suitable for restoration: 42% with the highest rank (7), 28% with a rank of 6, and 19% with a rank of 5. The results show that the model is a viable tool for selection of seagrass restoration sites in Florida and elsewhere. With knowledge of the light environment and boating patterns, managers will be better equipped to set seagrass restoration and water quality improvement targets and select sites for restoration. The modeling approach outlined here is broadly applicable and will be of value to a large and diverse suite of scientists and marine resource managers.


Subject(s)
Alismatales , Biodegradation, Environmental , Hydrocharitaceae , Models, Theoretical , Alismatales/physiology , Ecosystem , Environment , Florida , Hydrocharitaceae/physiology , Recreation , Spatio-Temporal Analysis , Sunlight , Water Quality
14.
Mar Pollut Bull ; 81(1): 94-102, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24613262

ABSTRACT

Seagrasses around the world are threatened by human activities that degrade water quality and reduce light availability. In this study, light requirements were determined for four common and abundant seagrasses along the Gulf coast of peninsular Florida using a threshold detecting algorithm. Light requirements ranged from 8% to 10% of surface irradiance for Halophila engelmannii to 25-27% of surface irradiance for Halodule wrightii. Requirements for all species differed from previous reports generated at other locations. Variations were attributed to morphological and physiological differences, as well as adaptation to light histories at specific locations. In addition, seagrasses were absent from stations with significantly higher concentrations of total nitrogen, total phosphorus, chlorophyll a and color. These results confirm the need to address links between increased anthropogenic nutrient loads, eutrophication, reduced light penetration, and loss of seagrasses and the services they provide.


Subject(s)
Alismatales/physiology , Light , Chlorophyll/metabolism , Chlorophyll A , Eutrophication , Florida , Gulf of Mexico , Population Dynamics , Water Pollutants
15.
Mar Pollut Bull ; 78(1-2): 51-5, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24341943

ABSTRACT

Strategies to control invasive lionfish in the western Atlantic and Caribbean are likely to include harvest and consumption. Until this report, total mercury concentrations had been documented only for lionfish from Jamaica, and changes in concentrations with increasing fish size had not been evaluated. In the Florida Keys, total mercury concentrations in dorsal muscle tissue from 107 lionfish ranged from 0.03 to 0.48 ppm, with all concentrations being less than the regulatory threshold for limited consumption. Mercury concentrations did not vary consistently with standard lengths or wet weights of lionfish. In 2010, lionfish from the upper Keys had mean concentrations that were 0.03-0.04 ppm higher than lionfish from the middle Keys, but mean concentrations did not differ consistently among years and locations. Overall, total mercury concentrations in lionfish were lower than those in several predatory fishes that support commercial and recreational fisheries in Florida.


Subject(s)
Introduced Species , Mercury/metabolism , Perciformes/metabolism , Water Pollutants, Chemical/metabolism , Animals , Environmental Monitoring , Florida
16.
PLoS One ; 8(10): e75432, 2013.
Article in English | MEDLINE | ID: mdl-24130710

ABSTRACT

Coral reefs are damaged by natural disturbances and local and global anthropogenic stresses. As stresses intensify, so do debates about whether reefs will recover after significant damage. True headway in this debate requires documented temporal trajectories for coral assemblages subjected to various combinations of stresses; therefore, we report relevant changes in coral assemblages at Little Cayman Island. Between 1999 and 2012, spatiotemporal patterns in cover, densities of juveniles and size structure of assemblages were documented inside and outside marine protected areas using transects, quadrats and measurements of maximum diameters. Over five years, bleaching and disease caused live cover to decrease from 26% to 14%, with full recovery seven years later. Juvenile densities varied, reaching a maximum in 2010. Both patterns were consistent within and outside protected areas. In addition, dominant coral species persisted within and outside protected areas although their size frequency distributions varied temporally and spatially. The health of the coral assemblage and the similarity of responses across levels of protection suggested that negligible anthropogenic disturbance at the local scale was a key factor underlying the observed resilience.


Subject(s)
Anthozoa/physiology , Environmental Monitoring/methods , Animals , Conservation of Natural Resources/methods , Coral Reefs
17.
PLoS One ; 6(5): e19666, 2011 May 10.
Article in English | MEDLINE | ID: mdl-21572951

ABSTRACT

The lionfish, Pterois volitans (Linnaeus) and Pterois miles (Bennett), invasion of the Western Atlantic Ocean, Caribbean Sea and Gulf of Mexico has the potential to alter aquatic communities and represents a legitimate ecological concern. Several local removal programs have been initiated to control this invasion, but it is not known whether removal efforts can substantially reduce lionfish numbers to ameliorate these concerns. We used an age-structured population model to evaluate the potential efficacy of lionfish removal programs and identified critical data gaps for future studies. We used high and low estimates for uncertain parameters including: length at 50% vulnerability to harvest (L(vul)), instantaneous natural mortality (M), and the Goodyear compensation ratio (CR). The model predicted an annual exploitation rate between 35 and 65% would be required to cause recruitment overfishing on lionfish populations for our baseline parameter estimates for M and CR (0.5 and 15). Lionfish quickly recovered from high removal rates, reaching 90% of unfished biomass six years after a 50-year simulated removal program. Quantifying lionfish natural mortality and the size-selective vulnerability to harvest are the most important knowledge gaps for future research. We suggest complete eradication of lionfish through fishing is unlikely, and substantial reduction of adult abundance will require a long-term commitment and may be feasible only in small, localized areas where annual exploitation can be intense over multiple consecutive years.


Subject(s)
Conservation of Natural Resources , Introduced Species , Perciformes/physiology , Aging/physiology , Animals , Body Weight , Computer Simulation , Female , Male , Models, Biological , North Carolina , Perciformes/anatomy & histology
18.
Ecol Appl ; 20(3): 816-29, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20437966

ABSTRACT

Contradictions between system-specific evidence and broader paradigms to explain ecosystem behavior present a challenge for natural resource management. In Florida (U.S.A.) springs, increasing nitrate (NO3-) concentrations have been implicated as the cause of algal overgrowth via alleviation of N-limitation. As such, policy and management efforts have centered heavily on reduction of nitrogen (N) loads. While the N-limitation hypothesis appears well founded on broadly supported aquatic eutrophication models, several observations from Florida springs are inconsistent with this hypothesis in its present simplified form. First, NO3- concentration is not correlated with algal abundance across the broad population of springs and is weakly negatively correlated with primary productivity. Second, within individual spring runs, algal mats are largely confined to the headwater reaches within 250 m of spring vents, while elevated NO3- concentrations persist for several kilometers or more. Third, historic observations suggest that establishment of macroalgal mats often lags behind observed increases in NO3- by more than a decade. Fourth, although microcosm experiments indicate high thresholds for N-limitation of algae, experiments in situ have demonstrated only minimal response to N enrichment. These muted responses may reflect large nutrient fluxes in springs, which were sufficient to satisfy present demand even at historic concentrations. New analyses of existing data indicate that dissolved oxygen (DO) has declined dramatically in many Florida springs over the past 30 years, and that DO and grazer abundance are better predictors of algal abundance in springs than are nutrient concentrations. Although a precautionary N-reduction strategy for Florida springs is warranted given demonstrable effects of nutrient enrichment in a broad suite of aquatic systems worldwide, the DO-grazer hypothesis and other potential mechanisms merit increased scientific scrutiny. This case study illustrates the importance of an adaptive approach that explicitly evaluates paradigms as hypotheses and actively seeks alternative explanations.


Subject(s)
Ecosystem , Eukaryota/growth & development , Eutrophication , Nitrates/metabolism , Rivers/microbiology , Animals , Eukaryota/metabolism , Florida , Oxygen/metabolism
19.
Science ; 324(5928): 723-4; author reply 724-5, 2009 May 08.
Article in English | MEDLINE | ID: mdl-19423801
20.
Ann N Y Acad Sci ; 1134: 267-319, 2008.
Article in English | MEDLINE | ID: mdl-18566098

ABSTRACT

Polar regions have experienced significant warming in recent decades. Warming has been most pronounced across the Arctic Ocean Basin and along the Antarctic Peninsula, with significant decreases in the extent and seasonal duration of sea ice. Rapid retreat of glaciers and disintegration of ice sheets have also been documented. The rate of warming is increasing and is predicted to continue well into the current century, with continued impacts on ice dynamics. Climate-mediated changes in ice dynamics are a concern as ice serves as primary habitat for marine organisms central to the food webs of these regions. Changes in the timing and extent of sea ice impose temporal asynchronies and spatial separations between energy requirements and food availability for many higher trophic levels. These mismatches lead to decreased reproductive success, lower abundances, and changes in distribution. In addition to these direct impacts of ice loss, climate-induced changes also facilitate indirect effects through changes in hydrography, which include introduction of species from lower latitudes and altered assemblages of primary producers. Here, we review recent changes and trends in ice dynamics and the responses of marine ecosystems. Specifically, we provide examples of ice-dependent organisms and associated species from the Arctic and Antarctic to illustrate the impacts of the temporal and spatial changes in ice dynamics.


Subject(s)
Ecosystem , Ice , Animals , Antarctic Regions , Arctic Regions , Greenhouse Effect , Oceans and Seas
SELECTION OF CITATIONS
SEARCH DETAIL
...