Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cannabis Res ; 5(1): 19, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37291630

ABSTRACT

BACKGROUND: This paper examines the factors that led to the collapse of hemp grown for cannabidiol (CBD) in Arizona, the United States of America (USA), and particularly in Yuma County, which is a well-established agricultural area in the state. METHODS: This research uses a combination of mapping analysis along with a survey of hemp farmers to assess the reasons why the hemp industry collapsed as well as to foster solutions to these problems. RESULTS: In 2019, 5430 acres were sown with hemp seed in Arizona with 3890 acres inspected by the state to determine if they could be harvested. By 2021, there were only 156 acres planted, and only 128 of those acres were inspected by the state for compliance. (Crop mortality accounts for the difference between acres sown and acres inspected.) CONCLUSIONS: A lack of knowledge about the hemp life cycle greatly contributed to the failure of high CBD hemp crops in Arizona. Other problems included noncompliance with tetrahydrocannabinol limits, poor sources for seeds and inconsistent genetics of the hemp varieties sold to farmers, and diseases that hemp plants were susceptible to such as Pythium crown and root rot and beet curly top virus. Addressing these factors will go far in making hemp a profitable and widespread crop in Arizona. Additionally, hemp grown for other traditional uses (e.g., fiber or seed oil) as well as new applications (e.g., microgreens, hempcrete, and phytoremediation) offers other pathways for successful hemp agriculture in this state.

2.
J Environ Manage ; 325(Pt B): 116575, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36308968

ABSTRACT

Environmental managers have been striving to optimize landscape structure to achieve a sustained supply of ecosystem services (ESs). However, we still lack a full understanding of the relationships between landscape structure and ESs due to the absence of thorough investigations on the variability of these relationships in space and time. To fill this critical gap, we assessed landscape structure alongside four important ESs (agricultural production (AP), carbon sequestration (CS), soil conservation (SC), and water retention (WR)) in the Wuhan metropolitan area (WMA), and then analyzed the spatiotemporal impacts of landscape structure on ESs from 2000 to 2020 using Geographically and Temporally Weighted Regression. The results show only AP maintained a stable growth trend over the past two decades, while the other ESs fluctuated considerably with a noticeable decline in SC and WR. The importance of landscape structure in influencing ESs varies by time and place, depending on the local landscape composition and configuration. In general, landscape composition has a stronger and less temporally stable impact on ESs compared to configuration. Furthermore, increases in landscape diversity, as measured through Shannon's diversity index, and the percentage of woodlands were found to contribute to the simultaneous benefits of multiple ESs, but in most cases the effects of landscape structure on different ESs were different or even opposite, suggesting that trade-offs are critical in landscape management. The findings highlight the complex response of ESs to dramatically changing landscapes in the WMA and can guide decision-makers in precise spatial arrangement and temporal adjustments to improve current landscape management.


Subject(s)
Conservation of Natural Resources , Ecosystem , Conservation of Natural Resources/methods , Agriculture/methods , Cities , Carbon Sequestration , Soil , China
3.
Insects ; 11(10)2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33066330

ABSTRACT

As mosquito-borne diseases are a growing human health concern in the United States, the distribution and potential arbovirus risk from container-breeding Aedes mosquitoes is understudied in the southern Great Plains. The aim of the study was to assess landscape and anthropogenic factors associated with encountering adult container-breeding mosquitoes in small cities in southern Oklahoma. Collections were carried out over a 10 week period from June to August 2017 along two geographical transects, each consisting of three cities, equally distant from the Red River/Texas border. Mosquitoes were collected weekly using two trap types along with data for 13 landscape, vegetation, and anthropogenic variables. After five rounds of collection, 6628 female mosquitoes were collected over 2110 trap-nights involving 242 commercial or residential sites in six cities. Of the mosquitoes collected, 80% consisted of container-breeding species: Aedes albopictus (72%), Culex pipiens complex (16%) and Aedes aegypti (8%). Regionally, Aedes aegypti was more likely present in cities closest to the Texas border while Ae. albopictus was spread throughout the region. In general, Ae. aegypti and Ae. albopictus were significantly more present in sites featuring no or low vegetation and residential sites. Variables associated with Ae. albopictus presence and abundance varied between cities and highlighted the urban nature of the species. The study highlighted the distribution of Ae. aegypti geographically and within the urban context, indicated potential habitat preferences of container-breeding mosquito species in small towns, and demonstrated the usefulness of Gravid Aedes traps (GAT) traps for monitoring Aedes populations in urban habitats in small cities.

4.
Sensors (Basel) ; 19(9)2019 05 10.
Article in English | MEDLINE | ID: mdl-31083477

ABSTRACT

Small unmanned aircraft systems (sUAS) are rapidly transforming atmospheric research. With the advancement of the development and application of these systems, improving knowledge of best practices for accurate measurement is critical for achieving scientific goals. We present results from an intercomparison of atmospheric measurement data from the Lower Atmospheric Process Studies at Elevation-a Remotely piloted Aircraft Team Experiment (LAPSE-RATE) field campaign. We evaluate a total of 38 individual sUAS with 23 unique sensor and platform configurations using a meteorological tower for reference measurements. We assess precision, bias, and time response of sUAS measurements of temperature, humidity, pressure, wind speed, and wind direction. Most sUAS measurements show broad agreement with the reference, particularly temperature and wind speed, with mean value differences of 1.6 ± 2 . 6 ∘ C and 0.22 ± 0 . 59 m/s for all sUAS, respectively. sUAS platform and sensor configurations were found to contribute significantly to measurement accuracy. Sensor configurations, which included proper aspiration and radiation shielding of sensors, were found to provide the most accurate thermodynamic measurements (temperature and relative humidity), whereas sonic anemometers on multirotor platforms provided the most accurate wind measurements (horizontal speed and direction). We contribute both a characterization and assessment of sUAS for measuring atmospheric parameters, and identify important challenges and opportunities for improving scientific measurements with sUAS.

SELECTION OF CITATIONS
SEARCH DETAIL
...