Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Food Microbiol ; 395: 110194, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37004495

ABSTRACT

Almond production generates large amounts of by-products rich in polyphenols. In this study, almond skin was explored as a valuable food ingredient in bread making. To this purpose, almond skin was used to produce functional products modifying a traditional sourdough bread recipe. The doughs were prepared replacing semolina with powdered almond skin (PAS) at 5 and 10 % (w/w). Sourdough inoculum was started with a mix of lactic acid bacteria (LAB) and propagated in semolina until reaching pH 3.7. The pH of PAS added breads was higher than that of control (CTR) breads before and after fermentation. Plate counts showed a similar evolution of LAB and total mesophilic microorganisms, but members of Enterobacteriaceae and coliform were detectable in PAS doughs. Illumina data clearly showed a dominance of lactobacilli in all trials, but PAS doughs displayed the presence of Bacillus. The final bread characteristics were influenced by PAS and its addition percentage; in particular, crust and crumb colour resulted darker, the alveolation decreased and, regarding sensory attributes, odour intensity increased, while bread odour diminished. In presence of PAS, bread emissions were characterized by lower percentages of alcohols and aromatic hydrocarbons and higher percentages of the other volatile compound classes, especially terpenoids like ß-pinene, ß-myrcene and limonene than CTR trial. After in vitro simulated digestion, the final release of phytochemicals from 10 % PAS bread was almost 100 %. Thus, PAS determined an increase of the antioxidant capacity of the breads. Phytochemicals released from digested PAS-fortified bread can provide antioxidant protection in a complex biological environment such as human intestinal-like cells. Besides the positive functional properties of PAS, this work also evidenced the hygienic issues of almond skin and, in order to avoid potential risks for the human health, highlighted the need to preserve its microbiological characteristics during storage for their reuse in bread production.


Subject(s)
Lactobacillales , Prunus dulcis , Humans , Bread/microbiology , Antioxidants , Lactobacillus , Triticum/microbiology , Fermentation , Edible Grain
2.
Molecules ; 25(21)2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33143282

ABSTRACT

Manna is produced from the spontaneous solidification of the sap of some Fraxinus species, and, owing its content in mannitol, is used in medicine as a mild laxative. Manna is also a rich source of characteristic bio-phenols with reducing, antioxidant and anti-inflammatory properties. This study assesses the activity of a hydrophilic extract of manna (HME) on cellular and molecular events in human colon-rectal cancer cells. HME showed a time- and concentration-dependent anti-proliferative activity, measured by MTT assay, in all the cell lines examined, namely Caco-2, HCT-116 and HT-29. The amounts of HME that caused 50% of cell death after a 24 h treatment were 8.51 ± 0.77, 10.73 ± 1.22 and 28.92 ± 1.99 mg manna equivalents/mL, respectively; no toxicity was observed in normally differentiated Caco-2 intestinal cells. Hydroxytyrosol, a component of HME known for its cytotoxic effects on colon cancer cells, was ineffective, at least at the concentration occurring in the extract. Through flow-cytometric techniques and Western blot analysis, we show that HME treatment causes apoptosis, assessed by phosphatidylserine exposure, as well as a loss of mitochondrial membrane potential, an intracellular formation of reactive oxygen species (ROS), increases in the levels of cleaved PARP-1, caspase 3 and Bax, and a decrease in Bcl-2 expression. Moreover, HME interferes with cell cycle progression, with a block at the G1/S transition. In conclusion, the phytocomplex extracted from manna exerts an anti-proliferative activity on human colon cancer cells through the activation of mitochondrial pathway-mediated apoptosis and cell cycle arrest. Our data may suggest that manna could have the potential to exert chemo-preventive effects for the intestine.


Subject(s)
Antineoplastic Agents, Phytogenic , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Colonic Neoplasms/drug therapy , Fraxinus/chemistry , Mitochondria/metabolism , Plant Extracts , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Caco-2 Cells , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Gene Expression Regulation, Neoplastic/drug effects , HT29 Cells , Humans , Mitochondria/pathology , Neoplasm Proteins/biosynthesis , Plant Extracts/chemistry , Plant Extracts/pharmacology
3.
Biomolecules ; 10(7)2020 07 02.
Article in English | MEDLINE | ID: mdl-32630700

ABSTRACT

Combining phytochemicals with chemotherapics is an emerging strategy to treat cancer to overcome drug toxicity and resistance with natural compounds. We assessed the effects of indicaxanthin (Ind), a pigment obtained from Opuntia ficus-indica (L. Mill) fruit, combined with cisplatin (CDDP) against cervical cancer cells (HeLa). Measured cell viability via Trypan blue assay; cell morphology via fluorescence microscopy; apoptosis, cell cycle, mitochondrial membrane potential (MMP) and cell redox balance via flow-cytometry; expression levels of apoptosis-related proteins via western blot. Cell viability assays and Chou-Talalay plot demonstrated that the combination of CDDP and Ind had synergistic cytotoxic effects. Combined treatment had significant effects (p < 0.05) on phosphatidylserine externalization, cell morphological changes, cell cycle arrest, fall in MMP, ROS production and GSH decay compared with the individual treatment groups. Bax, cytochrome c, p53 and p21waf1 were over-expressed, while Bcl-2 was downregulated. Pre-treatment with N-acetyl-l-cysteine abolished the observed synergistic effects. We also demonstrated potentiation of CDDP anticancer activity by nutritionally relevant concentrations of Ind. Oxidative stress-dependent mitochondrial cell death is the basis of the chemosensitizing effect of Ind combined with CDDP against HeLa cancer cells. ROS act as upstream signaling molecules to initiate apoptosis via p53/p21waf1 axis. Ind can be a phytochemical of interest in combo-therapy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Betaxanthins/pharmacology , Cisplatin/pharmacology , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Pyridines/pharmacology , Tumor Suppressor Protein p53/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , HeLa Cells , Humans , Membrane Potential, Mitochondrial/drug effects , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Reactive Oxygen Species/metabolism
4.
Molecules ; 25(4)2020 Feb 15.
Article in English | MEDLINE | ID: mdl-32075253

ABSTRACT

In this study cytotoxicity of organotin(IV) compounds with 1,2,4-triazolo[1,5-a]pyrimidines, Me3Sn(5tpO) (1), n-Bu3Sn(5tpO) (2), Me3Sn(mtpO) (3), n-Bu3Sn(mtpO) (4), n-Bu3Sn(HtpO2) (5), Ph3Sn(HtpO2) (6) where 5HtpO = 4,5-dihydro-5-oxo-[1,2,4]triazolo-[1,5-a]pyrimidine, HmtpO = 4,7-dihydro-5-methyl-7-oxo-[1,2,4]triazolo-[1,5-a]pyrimidine, and H2tpO2 = 4,5,6,7-tetrahydro-5,7- dioxo-[1,2,4]triazolo-[1,5-a]-pyrimidine, was assessed on three different human tumor cell lines: HCT-116 (colorectal carcinoma), HepG2 (hepatocarcinoma) and MCF-7 (breast cancer). While 1 and 3 were inactive, compounds 2, 4, 5 and 6 inhibited the growth of the three tumor cell lines with IC50 values in the submicromolar range and showed high selectivity indexes towards the tumor cells (SI > 90). The mechanism of cell death triggered by the organotin(IV) derivatives, investigated on HCT-116 cells, was apoptotic, as evident from the externalization of phosphatidylserine to the cell surface, and occurred via the intrinsic pathway with fall of mitochondrial inner membrane potential and production of reactive oxygen species. While compound 6 arrested the cell progression in the G2/M cell cycle phase and increased p53 and p21 levels, compounds 2, 4 and 5 blocked cell duplication in the G1 phase without affecting the expression of either of the two tumor suppressor proteins. Compounds 1 and 2 were also investigated using single crystal X-ray diffraction and found to be, in both cases, coordination polymers forming 1 D chains based on metal-ligand interactions. Interestingly, for n-Bu3Sn(5tpO)(2) H-bonding interactions between 5tpO- ligands belonging to adjacent chains were also detected that resemble the "base-pairing" assembly and could be responsible for the higher biological activity compared to compound 1. In addition, they are the first example of bidentate N(3), O coordination for the 5HtpO ligand on two adjacent metal atoms.


Subject(s)
Apoptosis/drug effects , Cytotoxins/pharmacology , Gene Expression Regulation, Neoplastic , Organotin Compounds/pharmacology , Pyrimidines/pharmacology , Triazoles/pharmacology , Apoptosis/genetics , Cell Survival/drug effects , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cytotoxins/chemical synthesis , Drug Design , G1 Phase Cell Cycle Checkpoints/drug effects , G1 Phase Cell Cycle Checkpoints/genetics , G2 Phase Cell Cycle Checkpoints/drug effects , G2 Phase Cell Cycle Checkpoints/genetics , HCT116 Cells , Hep G2 Cells , Humans , Inhibitory Concentration 50 , MCF-7 Cells , Membrane Potential, Mitochondrial/drug effects , Mitochondrial Membranes/drug effects , Organotin Compounds/chemical synthesis , Pyrimidines/chemical synthesis , Reactive Oxygen Species/agonists , Reactive Oxygen Species/metabolism , Structure-Activity Relationship , Triazoles/chemical synthesis , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
5.
Cell Physiol Biochem ; 53(6): 933-947, 2019.
Article in English | MEDLINE | ID: mdl-31805226

ABSTRACT

BACKGROUND/AIMS: We showed that patho-physiological concentrations of either 7-keto-cholesterol (7-KC), or cholestane-3beta, 5alpha, 6beta-triol (TRIOL) caused the eryptotic death of human red blood cells (RBC), strictly dependent on the early production of reactive oxygen species (ROS). The goal of the current study was to assess the contribution of the erythrocyte ROS-generating enzymes, NADPH oxidase (RBC-NOX), nitric oxide synthase (RBC-NOS) and xanthine oxido-reductase (XOR) to the oxysterol-dependent eryptosis and pertinent activation pathways. METHODS: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, reactive oxygen/nitrogen species (RONS) and nitric oxide formation from 2',7'-dichloro-dihydrofluorescein (DCF-DA) and 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM DA) -dependent fluorescence, respectively; Akt1, phospho-NOS3 Ser1177, and PKCζ from Western blot analysis. The activity of individual 7-KC (7 µM) and TRIOL (2, µM) on ROS-generating enzymes and relevant activation pathways was assayed in the presence of Diphenylene iodonium chloride (DPI), N-nitro-L-arginine methyl ester (L-NAME), allopurinol, NSC23766 and LY294002, inhibitors in this order of RBC-NOX, RBC-NOS, XOR and upstream regulatory proteins Rac GTPase and phosphoinositide3 Kinase (PI3K); hemoglobin oxidation from spectrophotometric analysis. RESULTS: RBC-NOX was the target of 7-KC, through a signaling including Rac GTPase and PKCζ, whereas TRIOL caused activation of RBC-NOS according to the pathway PI3K/Akt, with the concurrent activity of a Rac-GTPase. In concomitance with the TRIOL-induced .NO production, formation of methemoglobin with global loss of heme were observed, ascribable to nitrosative stress. XOR, activated after modification of the redox environment by either RBC-NOX or RBC-NOS activity, concurred to the overall oxidative/nitrosative stress by either oxysterols. When 7-KC and TRIOL were combined, they acted independently and their effect on ROS/RONS production and PS exposure appeared the result of the effects of the oxysterols on RBC-NOX and RBC-NOS. CONCLUSION: Eryptosis of human RBCs may be caused by either 7-KC or TRIOL by oxidative/nitrosative stress through distinct signaling cascades activating RBC-NOX and RBC-NOS, respectively, with the complementary activity of XOR; when combined, the oxysterols act independently and both concur to the final eryptotic effect.


Subject(s)
Cholestanols/pharmacology , Eryptosis/drug effects , Ketocholesterols/pharmacology , NADPH Oxidases/metabolism , Nitric Oxide Synthase/metabolism , Erythrocytes/cytology , Erythrocytes/metabolism , Hemoglobins/chemistry , Humans , Oxidation-Reduction , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , rac GTP-Binding Proteins/antagonists & inhibitors , rac GTP-Binding Proteins/metabolism
6.
Oxid Med Cell Longev ; 2019: 3457846, 2019.
Article in English | MEDLINE | ID: mdl-30911345

ABSTRACT

Oxidized low-density lipoproteins (oxLDL) play a pivotal role in the etiopathogenesis of atherosclerosis through the activation of inflammatory signaling events eventually leading to endothelial dysfunction and senescence. In the present work, we investigated the effects of indicaxanthin, a bioavailable, redox-modulating phytochemical from Opuntia ficus indica fruits, with anti-inflammatory activity, against oxLDL-induced endothelial dysfunction. Human umbilical vein cord cells (HUVEC) were stimulated with human oxLDL, and the effects of indicaxanthin were evaluated in a range between 5 and 20 µM, consistent with its plasma level after a fruit meal (7 µM). Pretreatment with indicaxanthin significantly and concentration-dependently inhibited oxLDL-induced cytotoxicity; ICAM-1, VCAM-1, and ELAM-1 increase; and ABC-A1 decrease of both protein and mRNA levels. From a mechanistic perspective, we also provided evidence that the protective effects of indicaxanthin were redox-dependent and related to the pigment efficacy to inhibit NF-κB transcriptional activity. In conclusion, here we demonstrate indicaxanthin as a novel, dietary phytochemical, able to exert significant protective vascular effects in vitro, at nutritionally relevant concentrations.


Subject(s)
Betaxanthins/pharmacology , Human Umbilical Vein Endothelial Cells/pathology , Lipoproteins, LDL/adverse effects , NF-kappa B/metabolism , Opuntia/chemistry , Pyridines/pharmacology , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Betaxanthins/chemistry , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Survival/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Pyridines/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Thiobarbituric Acid Reactive Substances , Transcription, Genetic/drug effects , Up-Regulation/drug effects , Up-Regulation/genetics
7.
Toxicology ; 411: 43-48, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30385265

ABSTRACT

Cigarette smoking has been linked with oxidative stress and inflammation. In turn, eryptosis, the suicidal erythrocyte death similar to apoptosis that can be triggered by oxidative stress, has been associated with chronic inflammatory diseases including atherosclerosis. However, the link between smoking and eryptosis has not been explored so far. The aim of the present study was to determine the level of eryptotic erythrocytes in healthy male smokers (n = 21) compared to non-smokers (n = 21) and assess its relationship with systemic inflammation (CRP) as well as with antioxidant defense (GSH) and their resistance to ex-vivo induced hemolysis. Smoking caused an increase in phosphatidylserine translocation outside the erythrocyte membrane (hallmark of eryptosis), significantly correlated to the plasma level of CRP (r = 0.546) and GSH concentration in erythrocytes (r=-0.475). With respect to non-smokers, smokers show a marginal increase of total leucocytes and erythrocyte volume, no modifications of the RBC resistance to oxidative stress-induced hemolysis and hematological and lipid parameters unvaried. We conclude that the inflammatory status (high CRP levels) and RBC oxidative stress (low GSH levels) caused by cigarette smoking are associated with an increase of eryptotic erythrocytes, a yet unknown relationship potentially involved with atherosclerosis and cardiovascular disease in smokers.


Subject(s)
Antioxidants/metabolism , C-Reactive Protein/metabolism , Eryptosis , Smokers , Smoking/adverse effects , Adult , Cross-Sectional Studies , Erythrocyte Membrane/drug effects , Erythrocyte Membrane/metabolism , Glutathione/blood , Health Status , Hemolysis/drug effects , Humans , In Vitro Techniques , Leukocyte Count , Male , Middle Aged , Oxidative Stress/drug effects , Phosphatidylserines/blood , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...