ABSTRACT
The system of polysaccharides from Schizymenia dubyi (Nemastomatales) was investigated. It contains a mixture of hybrid dl galactans (SH-S) and carrageenan-like polysaccharides, which were separated by means of precipitation with KCl at high concentrations. The structural features of the carrageenan-like fraction (SH-I) were investigated by methylation analysis, desulfation, uronic acid reduction, and NMR spectroscopy. It was concluded that the structure has the typical alternance α-(1 â 3), ß-(1 â 4) of d-galactose units, with most of the 3-linked units sulfated in O-2 (and some in O-4), and most of the 4-linked units sulfated in O-3, and substituted in O-2 by single stubs of ß-d-glucuronic acid (partly sulfated in each of the three available positions). This substituent has been only seldom found in red seaweed galactans. Rheological studies of 5 % and 10 % w/v SH, SH-S and SH-I aqueous systems, either without ions, or in KCl or CaCl2 solution gave thickening behaviors. Their random coil conformations justify the pseudoplastic behavior observed in the viscosity versus shear rate curves. As SH-S and SH-I are both contained in SH, an interpenetrating network could form in SH between the glucurono-carrageenan and the agaran, as inferred from the mechanical spectra recorded in water, especially with potassium ion.
Subject(s)
Carrageenan , Rheology , Carrageenan/chemistry , Viscosity , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Galactans/chemistry , Rhodophyta/chemistry , Magnetic Resonance SpectroscopyABSTRACT
The classification of Cystoclonium obtusangulum has been questioned since the species was first described by Hooker and Harvey as Gracilaria? obtusangula. The objective of this study was to provide the first comprehensive taxonomic analysis of Cystoclonium obtusangulum, based on DNA sequences coupled with morphological observations made on syntype specimens and new collections. Sequence divergences of rbcL, UPA, and COI-5P, and maximum-likelihood phylogenies for rbcL and 18S demonstrated that specimens identified as Cystoclonium obtusangulum represent a clade of two distinct species that are distantly related to the generitype Cystoclonium purpureum. A new genus, Meridionella gen. nov., is proposed for this clade. The two species placed in this new genus were morphologically indistinguishable cryptic species, but have disjunct distributions, with Meridionella obtusangula comb. nov. found from temperate to cold coasts of South America and the Falkland Islands and Meridionella antarctica sp. nov., occurring in Antarctic waters. Vegetative and reproductive characters of Meridionella gen. nov. are described, and implications of our results for the biogeography of the family Cystocloniaceae are discussed.
Subject(s)
Rhodophyta , Antarctic Regions , Phylogeny , RNA, Ribosomal, 16S , Rhodophyta/genetics , Sequence Analysis, DNA , South AmericaABSTRACT
BACKGROUND: Correctly identifying organisms is key to most biological research, and is especially critical in areas of biodiversity and conservation. Yet it remains one of the greatest challenges when studying all but the few well-established model systems. The challenge is in part due to the fact that most species have yet to be described, vanishing taxonomic expertise and the relative inaccessibility of taxonomic information. Furthermore, identification keys and other taxonomic resources are based on complex, taxon-specific vocabularies used to describe important morphological characters. Using these resources is made difficult by the fact that taxonomic documentation of the world's biodiversity is an international endeavour, and keys and field guides are not always available in the practitioner's native language. NEW INFORMATION: To address this challenge, we have developed a publicly available on-line illustrated multilingual glossary and translation tool for technical taxonomic terms using the Symbiota Software Project biodiversity platform. Illustrations, photographs and translations have been sourced from the global community of taxonomists working with marine invertebrates and seaweeds. These can be used as single-language illustrated glossaries or to make customized translation tables. The glossary has been launched with terms and illustrations of seaweeds, tunicates, sponges, hydrozoans, sea anemones, and nemerteans, and already includes translations into seven languages for some groups. Additional translations and development of terms for more taxa are underway, but the ultimate utility of this tool depends on active participation of the international taxonomic community.