Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Microorganisms ; 11(8)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37630653

ABSTRACT

Fungal glycosphingolipids (GSLs) are important membrane components which play a key role in vesicle trafficking. To assess the importance of GSLs in the fungal life cycle, we performed a mutant phenotypic study of the acidic and neutral GSL biosynthetic pathways in Neurospora crassa. GSL biosynthesis begins with two reactions leading up to the formation of dihydrosphingosine. The first of these reactions is catalyzed by serine palmitoyltransferase and generates 3-keto dihydrosphinganine. In N. crassa, this reaction is catalyzed by GSL-1 and GSL-2 and is required for viability. The second reaction is carried out by GSL-3, a 3-keto dihydrosphinoganine reductase to generate dihydrosphingosine, which is used for the synthesis of neutral and acidic GSLs. We found that deletion mutations in the acidic GSL pathway leading up to the formation of mannosylinositol-phosphoceramide are lethal, indicating that acidic GSLs are essential for viability in N. crassa. Once mannosylinositol-phosphoceramide is made, it is further modified by GSL-5, an inositol-phosphoceramide-B C26 hydroxylase, which adds a hydroxyl group to the amide-linked fatty acid. GSL-5 is not required for viability but gives a clear mutant phenotype affecting all stages of the life cycle. Our results show that the synthesis of mannosylinositol-phosphoceramide is required for viability and that the modification of the amide-linked fatty acid is important for acidic GSL functionality. We also examined the neutral GSL biosynthetic pathway and identified the presence of glucosylceramide. The deletion of neutral GSL biosynthetic genes affected hyphal morphology, vegetative growth rate, conidiation, and female development. Our results indicate that the synthesis of neutral GSLs is essential for normal growth and development of N. crassa.

2.
Fungal Genet Biol ; 168: 103826, 2023 10.
Article in English | MEDLINE | ID: mdl-37541569

ABSTRACT

Galactofuranose is a constituent of the cell walls of filamentous fungi. The galactofuranose can be found as a component of N-linked oligosaccharides, in O-linked oligosaccharides, in GPI-anchored galactomannan, and in free galactomannan. The Neurospora genome contains a single UDP-galactose mutase gene (ugm-1/NCU01824) and two UDP-galactofuranose translocases used to import UDP-galactofuranose into the lumen of the Golgi apparatus (ugt-1/NCU01826 and ugt-2/NCU01456). Our results demonstrate that loss of galactofuranose synthesis or its translocation into the lumen of the secretory pathway affects the morphology and growth rate of the vegetative hyphae, the production of conidia (asexual spores), and dramatically affects the sexual stages of the life cycle. In mutants that are unable to make galactofuranose or transport it into the lumen of the Golgi apparatus, ascospore development is aborted soon after fertilization and perithecium maturation is aborted prior to the formation of the neck and ostiole. The Neurospora genome contains three genes encoding possible galactofuranosyltransferases from the GT31 family of glycosyltransferases (gfs-1/NCU05878, gfs-2/NCU07762, and gfs-3/NCU02213) which might be involved in generating galactofuranose-containing oligosaccharide structures. Analysis of triple KO mutants in GT31 glycosyltransferases shows that these mutants have normal morphology, suggesting that these genes do not encode vital galactofuranosyltransferases.


Subject(s)
Fungal Proteins , Neurospora crassa , Fungal Proteins/metabolism , Glycosyltransferases/analysis , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Cell Wall/metabolism
3.
Fungal Genet Biol ; 160: 103686, 2022 05.
Article in English | MEDLINE | ID: mdl-35306147

ABSTRACT

The formation of a cell wall is vital for the survival and growth of a fungal cell. Fungi express members of the GH76 family of α-1,6-mannanases which play an important role in cell wall biogenesis. In this report we characterize the Neurospora crassa DFG-5 α-1,6-mannanase and demonstrate that it binds to the α-1,6-mannose backbone of an N-linked galactomannan found on cell wall glycoproteins. We show that DFG-5 has an enzymatic activity and provide evidence that it processes the α-1,6-mannose backbone of the N-linked galactomannan. Site-directed mutagenesis and complementation experiments show that D116 and D117 are located at the DFG-5 active site. D76 and E130, which are located in a groove on the opposite side of the protein, are also important for enzyme function. Cell wall glycoproteins co-purify with DFG-5 demonstrating a specific association between DFG-5 and cell wall glycoproteins. DFG-5 is able to discriminate between cell wall and secreted glycoproteins, and does not bind to the N-linked galactomannans present on secreted glycoproteins. DFG-5 plays a key role in targeting extracellular glycoproteins to their final destinations. By processing the galactomannans on cell wall proteins, DFG-5 targets them for cell wall incorporation by lichenin transferases. The N-linked galactomannans on secreted proteins are not processed by DFG-5, which targets these proteins for release into the extracellular medium.


Subject(s)
Neurospora crassa , Cell Wall/metabolism , Glycoproteins/genetics , Glycoproteins/metabolism , Mannose/analysis , Mannose/metabolism
4.
Cell Surf ; 8: 100073, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35079668

ABSTRACT

GH16 chitin transferases, GH17 ß-1,3-glucan transferases, and GH72 ß-1,3-glucan/lichenin transferases are important fungal cell wall crosslinking enzymes. The Neurospora crassa genome encodes three genes from the GH17 gene family and five members in the GH16 subfamily 18 and 19 fungal chitin transferases. We created deletion mutants lacking all three GH17 genes and determined that they had wild type morphology and are more sensitive to cell wall perturbation reagents than the wild type. We also created deletion mutants lacking all five GH16 subfamily 18 and 19 genes and found that they had wild type morphology and are more sensitive to cell wall perturbation reagents than the wild type. We conclude that GH16 and GH17 enzymes play roles in cell wall biogenesis. In N. crassa, GH72 enzymes have been reported to be lichenin transferases, while in other fungi they have been shown to be the ß-1,3-glucan transferases. Neurospora triple GH72 deletions give rise to a tight colonial morphology, sensitivity to cell wall perturbation reagents, and release of cell wall proteins into the medium. To ask if GH72 and GH17 enzymes might be redundant in N. crassa, we created sextuple mutants lacking the three GH72 genes and the three GH17 genes and found that they were indistinguishable from the GH72 triple mutant. We also found that a recombinant GH72 enzyme is able to form a lichenin-enzyme intermediate demonstrating that GH72 enzymes are lichenin transferases. The N. crassa GH72 enzymes are lichenin transferases and are not redundant with the GH17 ß-1,3-glucan transferases.

5.
Front Microbiol ; 10: 2294, 2019.
Article in English | MEDLINE | ID: mdl-31649638

ABSTRACT

This review discusses the wealth of information available for the N. crassa cell wall. The basic organization and structure of the cell wall is presented and how the wall changes during the N. crassa life cycle is discussed. Over forty cell wall glycoproteins have been identified by proteomic analyses. Genetic and biochemical studies have identified many of the key enzymes needed for cell wall biogenesis, and the roles these enzymes play in cell wall biogenesis are discussed. The review includes a discussion of how the major cell wall components (chitin, ß-1,3-glucan, mixed ß-1,3-/ ß-1,4- glucans, glycoproteins, and melanin) are synthesized and incorporated into the cell wall. We present a four-step model for how cell wall glycoproteins are covalently incorporated into the cell wall. In N. crassa, the covalent incorporation of cell wall glycoproteins into the wall occurs through a glycosidic linkage between lichenin (a mixed ß-1,3-/ß-1,4- glucan) and a "processed" galactomannan that has been attached to the glycoprotein N-linked oligosaccharides. The first step is the addition of the galactomannan to the N-linked oligosaccharide. Mutants affected in galactomannan formation are unable to incorporate glycoproteins into their cell walls. The second step is carried out by the enzymes from the GH76 family of α-1,6-mannanases, which cleave the galactomannan to generate a processed galactomannan. The model suggests that the third and fourth steps are carried out by members of the GH72 family of glucanosyltransferases. In the third step the glucanosyltransferases cleave lichenin and generate enzyme/substrate intermediates in which the lichenin is covalently attached to the active site of the glucanosyltransferases. In the final step, the glucanosyltransferases attach the lichenin onto the processed galactomannans, which creates new glycosidic bonds and effectively incorporates the glycoproteins into the cross-linked cell wall glucan/chitin matrix.

6.
PLoS One ; 14(4): e0215034, 2019.
Article in English | MEDLINE | ID: mdl-30947244

ABSTRACT

The Trichophyton rubrum genome contains six proteins containing two or more lysin M (LysM) domains. We have characterized two of these proteins, LysM1 and LysM2, and demonstrated that these proteins have the capacity to bind two substrates, chitin and N-linked oligosaccharides associated with human skin glycoproteins. We have characterized the individual LysM domains in LysM1, and shown that the protein contains two functional LysM domains. Each of these domains can bind to chitin, to N-linked oligosaccharides in human skin glycoproteins, and to N-linked oligosaccharides on fungal glycoproteins. We hypothesize that LysM proteins could provide the pathogen with three important functions. First, the T. rubrum LysM proteins could shield host cell wall chitin from the human immune system. Second, the LysM proteins could shield the pathogen's glycoproteins from host degradation and immune surveillance. Third, the LysM proteins could help facilitate pathogen adhesion to human skin.


Subject(s)
Cell Wall/metabolism , Chitin/metabolism , Fungal Proteins/metabolism , Glycoproteins/metabolism , Oligosaccharides/metabolism , Skin/metabolism , Trichophyton/metabolism , Amino Acid Sequence , Chitinases/metabolism , Humans , Protein Binding , Sequence Homology
7.
Fungal Biol ; 123(1): 1-9, 2019 01.
Article in English | MEDLINE | ID: mdl-30654952

ABSTRACT

Neurospora crassa contains all four enzymes for the synthesis of DHN (dihydroxynaphthalene), the substrate for melanin formation. We show that the DHN melanin pathway functions during N. crassa female development to generate melanized peridium and ascospore cell walls. N. crassa contains one polyketide synthase (PER-1), two polyketide hydrolases (PKH-1 and PKH-2), two THN (tetrahydroxynaphthalene) reductases (PKR-1 and PKR-2), and one scytalone dehydratase (SCY-1). We show that the PER-1, PKH-1, PKR-1 and SCY-1 are required for ascospoer melanization. We also identified the laccase that functions in the conversion of DHN into melanin via a free radical oxidative polymerization reaction, and have named the gene lacm-1 (laccase for melanin formation-1). In maturing perithecia, we show that LACM-1 is localized to the peridium cell wall space while the DHN pathway enzymes are localized to intracellular vesicles. We present a model for melanin formation in which melanin is formed within the cell wall space and the cell wall structure is similar to "reinforced concrete" with the cell wall glucan, chitin, and glycoproteins encased within the melanin polymer. This arrangement provides for a very strong and resilient cell wall and protects the glucan/chitin/glycoprotein matrix from digestion from enzymes and damage from free radicals.


Subject(s)
Biosynthetic Pathways , Melanins/biosynthesis , Neurospora crassa/metabolism , Spores, Fungal/metabolism , Cell Wall/metabolism , Enzymes/metabolism , Fungal Proteins/metabolism , Models, Biological , Naphthols , Neurospora crassa/enzymology
8.
Fungal Genet Biol ; 123: 60-69, 2019 02.
Article in English | MEDLINE | ID: mdl-30503329

ABSTRACT

The formation of a glucan/chitin/glycoprotein cell wall matrix is vital for fungal survival, growth, and morphogenesis. The cell wall proteins are important cell wall components and function in adhesion, signal transduction, and as cell wall structural elements. In this report we demonstrate that Neurospora crassa GH72 glucan transferases function to crosslink cell wall glycoproteins into the cell wall. With an in vitro assay, we show that the glucan transferases are able to attach lichenin, a cell wall glucan with a repeating ß-1,4-glucose-ß-1,4-glucose-ß-1,3-glucose structure, to cell wall glycoproteins. We propose that the pathway for attachment of lichenin to the glycoprotein has four steps. First, N-linked oligosaccharides present on the glycoproteins are modified by the addition of a galactomannan. As part of our report we have characterized the structure of the galactomannan, which consists of an α-1,6-mannose backbone with galactofuranose side chains. In the second step, the galactomannan is processed by members of the GH76 α-1,6-mannanases. In the third step, the glucan transferases cleave the lichenin and create substrate-enzyme intermediates. In the final step, the transferases transfer the lichenin to the processed galactomannan. We demonstrate that the N. crassa glucan transferases have demonstrate specificity for the processed galactomannan and for lichenin. The energy from the cleaved glycosidic bond in lichenin is retained in the substrate-enzyme intermediate and used to create a new glycosidic bond between the lichenin and the processed galactomannan. The pathway effectively crosslinks glycoproteins into the fungal cell wall.


Subject(s)
Cell Wall/genetics , Glucans/genetics , Glycoproteins/genetics , Mannans/genetics , Cell Wall/chemistry , Chitin/chemistry , Chitin/genetics , Galactose/analogs & derivatives , Glucans/chemistry , Glycoproteins/chemistry , Mannans/chemistry , Neurospora crassa/chemistry , Neurospora crassa/genetics
9.
J Fungi (Basel) ; 4(3)2018 Aug 09.
Article in English | MEDLINE | ID: mdl-30096860

ABSTRACT

The fungal cell wall is an extracellular organelle that provides structure and protection to cells. The cell wall also influences the interactions of cells with each other and surfaces. The cell wall can be reorganized in response to changing environmental conditions and different types of stress. Signaling pathways control the remodeling of the cell wall through target proteins that are in many cases not well defined. The Mitogen Activated Protein Kinase pathway that controls filamentous growth in yeast (fMAPK) was required for normal growth in media containing the cell wall perturbing agent Calcofluor White (CFW). A mass spectrometry (MASS-SPEC) approach and analysis of expression profiling data identified cell wall proteins and modifying enzymes whose levels were influenced by the fMAPK pathway. These include Flo11p, Flo10p, Tip1p, Pry2p and the mannosyltransferase, Och1p. Cells lacking Flo11p or Och1p were sensitive to CFW. The identification of cell wall proteins controlled by a MAPK pathway may provide insights into how signaling pathways regulate the cell wall.

10.
Fungal Genet Biol ; 101: 46-54, 2017 04.
Article in English | MEDLINE | ID: mdl-28285007

ABSTRACT

The Neurospora crassa genome encodes five GH72 family transglycosylases, and four of these enzymes (GEL-1, GEL-2, GEL-3 and GEL-5) have been found to be present in the cell wall proteome. We carried out an extensive genetic analysis on the role of these four transglycosylases in cell wall biogenesis and demonstrated that the transglycosylases are required for the formation of a normal cell wall. As suggested by the proteomic analysis, we found that multiple transglycosylases were being expressed in N. crassa cells and that different combinations of the enzymes are required in different cell types. The combination of GEL-1, GEL-2 and GEL-5 is required for the growth of vegetative hyphae, while the GEL-1, GEL-2, GEL-3 combination is needed for the production of aerial hyphae and conidia. Our data demonstrates that the enzymes are redundant with partially overlapping enzymatic activities, which provides the fungus with a robust cell wall biosynthetic system. Characterization of the transglycosylase-deficient mutants demonstrated that the incorporation of cell wall proteins was severely compromised. Interestingly, we found that the transglycosylase-deficient mutant cell walls contained more ß-1,3-glucan than the wild type cell wall. Our results demonstrate that the GH72 transglycosylases are not needed for the incorporation of ß-1,3-glucan into the cell wall, but they are required for the incorporation of cell wall glycoprotein into the cell wall.


Subject(s)
Cell Wall/genetics , Glycosyltransferases/genetics , Neurospora crassa/genetics , Proteome/genetics , Cell Wall/enzymology , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Fungal , Genome, Fungal , Glycoproteins/genetics , Glycosyltransferases/biosynthesis , Glycosyltransferases/classification , Hyphae/enzymology , Hyphae/genetics , Neurospora crassa/enzymology
11.
Fungal Genet Biol ; 94: 47-53, 2016 09.
Article in English | MEDLINE | ID: mdl-27381444

ABSTRACT

A proteomic analysis of the conidial cell wall identified 35 cell wall proteins. A comparison with the proteome of the vegetative hyphae showed that 16 cell wall proteins were shared, and that these shared cell wall proteins were cell wall biosynthetic proteins or cell wall structural proteins. Deletion mutants for 34 of the genes were analyzed for phenotypes indicative of conidial cell wall defects. Mutants for two cell wall glycosyl hydrolases, the CGL-1 ß-1,3-glucanase (NCU07523) and the NAG-1 exochitinase (NCU10852), were found to have a conidial separation phenotype. These two enzymes function in remodeling the cell wall between adjacent conidia to facilitate conidia formation and dissemination. Using promoter::RFP and promoter::GFP constructs, we demonstrated that the promoters for 15 of the conidia-specific cell wall genes, including cgl-1 and nag-1, provided for conidia-specific gene expression or for a significant increase in their expression during conidiation.


Subject(s)
Cell Wall/enzymology , Fungal Proteins/metabolism , Glycoside Hydrolases/metabolism , Hexosaminidases/metabolism , Neurospora crassa/enzymology , Spores, Fungal/enzymology , Cell Wall/genetics , Fungal Proteins/genetics , Gene Deletion , Glycoside Hydrolases/genetics , Hexosaminidases/genetics , Mutation , Neurospora crassa/genetics , Phenotype , Promoter Regions, Genetic , Proteome , Spores, Fungal/genetics
12.
Mol Plant Pathol ; 17(6): 985-95, 2016 08.
Article in English | MEDLINE | ID: mdl-26661933

ABSTRACT

We used a proteomic analysis to identify cell wall proteins released from Sclerotinia sclerotiorum hyphal and sclerotial cell walls via a trifluoromethanesulfonic acid (TFMS) digestion. Cell walls from hyphae grown in Vogel's glucose medium (a synthetic medium lacking plant materials), from hyphae grown in potato dextrose broth and from sclerotia produced on potato dextrose agar were used in the analysis. Under the conditions used, TFMS digests the glycosidic linkages in the cell walls to release intact cell wall proteins. The analysis identified 24 glycosylphosphatidylinositol (GPI)-anchored cell wall proteins and 30 non-GPI-anchored cell wall proteins. We found that the cell walls contained an array of cell wall biosynthetic enzymes similar to those found in the cell walls of other fungi. When comparing the proteins in hyphal cell walls grown in potato dextrose broth with those in hyphal cell walls grown in the absence of plant material, it was found that a core group of cell wall biosynthetic proteins and some proteins associated with pathogenicity (secreted cellulases, pectin lyases, glucosidases and proteases) were expressed in both types of hyphae. The hyphae grown in potato dextrose broth contained a number of additional proteins (laccases, oxalate decarboxylase, peroxidase, polysaccharide deacetylase and several proteins unique to Sclerotinia and Botrytis) that might facilitate growth on a plant host. A comparison of the proteins in the sclerotial cell wall with the proteins in the hyphal cell wall demonstrated that sclerotia formation is not marked by a major shift in the composition of cell wall protein. We found that the S. sclerotiorum cell walls contained 11 cell wall proteins that were encoded only in Sclerotinia and Botrytis genomes.


Subject(s)
Ascomycota/cytology , Ascomycota/metabolism , Cell Wall/metabolism , Proteome/metabolism , Fungal Proteins/metabolism , Glycosylphosphatidylinositols/metabolism , Hyphae/metabolism , Proteomics
13.
Eukaryot Cell ; 14(8): 792-803, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26048011

ABSTRACT

A biochemical pathway for the incorporation of cell wall protein into the cell wall of Neurospora crassa was recently proposed. In this pathway, the DFG-5 and DCW-1 endo-α-1,6-mannanases function to covalently cross-link cell wall protein-associated N-linked galactomannans, which are structurally related to the yeast outer chain mannans, into the cell wall glucan-chitin matrix. In this report, we demonstrate that the mannosyltransferase enzyme Och1p, which is needed for the synthesis of the N-linked outer chain mannan, is essential for the incorporation of cell wall glycoproteins into the Candida albicans cell wall. Using endoglycosidases, we show that C. albicans cell wall proteins are cross-linked into the cell wall via their N-linked outer chain mannans. We further demonstrate that the Dfg5p and Dcw1p α-1,6-mannanases are needed for the incorporation of cell wall glycoproteins into the C. albicans cell wall. Our results support the hypothesis that the Dfg5p and Dcw1p α-1,6-mannanases incorporate cell wall glycoproteins into the C. albicans cell wall by cross-linking outer chain mannans into the cell wall glucan-chitin matrix.


Subject(s)
Candida albicans/metabolism , Cell Wall/metabolism , Fungal Proteins/metabolism , Mannans/metabolism , Mannosyltransferases/metabolism , Membrane Glycoproteins/metabolism , Chitin/metabolism , Galactose/analogs & derivatives , Glucans/metabolism , Neurospora crassa/metabolism
14.
PLoS One ; 9(10): e110603, 2014.
Article in English | MEDLINE | ID: mdl-25333968

ABSTRACT

Using a screening protocol we have identified 68 genes that are required for female development in the filamentous fungus Neurospora crassa. We find that we can divide these genes into five general groups: 1) Genes encoding components of the PACC signal transduction pathway, 2) Other signal transduction pathway genes, including genes from the three N. crassa MAP kinase pathways, 3) Transcriptional factor genes, 4) Autophagy genes, and 5) Other miscellaneous genes. Complementation and RIP studies verified that these genes are needed for the formation of the female mating structure, the protoperithecium, and for the maturation of a fertilized protoperithecium into a perithecium. Perithecia grafting experiments demonstrate that the autophagy genes and the cell-to-cell fusion genes (the MAK-1 and MAK-2 pathway genes) are needed for the mobilization and movement of nutrients from an established vegetative hyphal network into the developing protoperithecium. Deletion mutants for the PACC pathway genes palA, palB, palC, palF, palH, and pacC were found to be defective in two aspects of female development. First, they were unable to initiate female development on synthetic crossing medium. However, they could form protoperithecia when grown on cellophane, on corn meal agar, or in response to the presence of nearby perithecia. Second, fertilized perithecia from PACC pathway mutants were unable to produce asci and complete female development. Protein localization experiments with a GFP-tagged PALA construct showed that PALA was localized in a peripheral punctate pattern, consistent with a signaling center associated with the ESCRT complex. The N. crassa PACC signal transduction pathway appears to be similar to the PacC/Rim101 pathway previously characterized in Aspergillus nidulans and Saccharomyces cerevisiae. In N. crassa the pathway plays a key role in regulating female development.


Subject(s)
Cell Communication/genetics , Fungal Proteins/genetics , Neurospora crassa/growth & development , Neurospora crassa/genetics , Autophagy/genetics , Chromatin Assembly and Disassembly/genetics , Fungal Proteins/biosynthesis , Gene Expression Regulation, Fungal , Mutation , Signal Transduction/genetics , Transcription Factors/genetics
15.
PLoS One ; 9(10): e107773, 2014.
Article in English | MEDLINE | ID: mdl-25279949

ABSTRACT

Intercellular communication of vegetative cells and their subsequent cell fusion is vital for different aspects of growth, fitness, and differentiation of filamentous fungi. Cell fusion between germinating spores is important for early colony establishment, while hyphal fusion in the mature colony facilitates the movement of resources and organelles throughout an established colony. Approximately 50 proteins have been shown to be important for somatic cell-cell communication and fusion in the model filamentous fungus Neurospora crassa. Genetic, biochemical, and microscopic techniques were used to characterize the functions of seven previously poorly characterized cell fusion proteins. HAM-6, HAM-7 and HAM-8 share functional characteristics and are proposed to function in the same signaling network. Our data suggest that these proteins may form a sensor complex at the cell wall/plasma membrane for the MAK-1 cell wall integrity mitogen-activated protein kinase (MAPK) pathway. We also demonstrate that HAM-9, HAM-10, AMPH-1 and WHI-2 have more general functions and are required for normal growth and development. The activation status of the MAK-1 and MAK-2 MAPK pathways are altered in mutants lacking these proteins. We propose that these proteins may function to coordinate the activities of the two MAPK modules with other signaling pathways during cell fusion.


Subject(s)
Fungal Proteins/metabolism , Neurospora crassa/physiology , Fungal Proteins/genetics , Gene Expression , Genes, Reporter , Hyphae , Models, Biological , Mutation , Phosphorylation , Protein Transport , Recombinant Fusion Proteins , Signal Transduction
16.
Fungal Genet Biol ; 69: 23-30, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24953997

ABSTRACT

The Neurospora crassa cps-1 gene encodes a polysaccharide synthase with homology to the Cryptococcus neoformans hyaluronic acid synthase Cps1p. Homologs of the cps-1 gene are found in the genomes of many fungi. Loss of CPS-1 results in a cell wall defect that affects all stages of the N. crassa life cycle, including vegetative growth, protoperithecia (female mating structure) development, and conidia (asexual spore) development. The cell wall of cps-1 deletion mutants is sensitive to cell wall perturbation reagents. Our results demonstrate that CPS-1 is required for the incorporation of cell wall proteins into the cell wall and plays a critical role in cell wall biogenesis. We found that the N. crassa cell wall is devoid of hyaluronic acid, and conclude that the polysaccharide produced by the CPS-1 is not hyaluronic acid.


Subject(s)
Cell Wall/metabolism , Glycosyltransferases/metabolism , Neurospora crassa/enzymology , Neurospora crassa/metabolism , Polysaccharides/metabolism , Cryptococcus neoformans/enzymology , Cryptococcus neoformans/genetics , Gene Deletion , Glycosyltransferases/genetics , Neurospora crassa/genetics , Sequence Homology, Amino Acid
17.
Microbiology (Reading) ; 160(Pt 8): 1618-1627, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24847001

ABSTRACT

The Neurospora crassa genome encodes two 1,3-α-glucan synthases. One of these 1,3-α-glucan synthase genes, ags-1, was shown to be required for the synthesis of 1,3-α-glucan in the aerial hyphae and macroconidia cell walls. 1,3-α-Glucan was found in the conidia cell wall, but was absent from the vegetative hyphae cell wall. Deletion of ags-1 affected conidial development. Δags-1 produced only 5 % as many conidia as the WT and most of the conidia produced by Δags-1 were not viable. The ags-1 upstream regulatory elements were shown to direct cell-type-specific expression of red fluorescent protein in conidia and aerial hyphae. A haemagglutinin-tagged AGS-1 was found to be expressed in aerial hyphae and conidia. The research showed that 1,3-α-glucan is an aerial hyphae and conidia cell wall component, and is required for normal conidial differentiation.


Subject(s)
Fungal Proteins/metabolism , Glucosyltransferases/metabolism , Neurospora crassa/enzymology , Spores, Fungal/growth & development , Cell Wall/genetics , Cell Wall/metabolism , Fungal Proteins/genetics , Glucans/biosynthesis , Glucosyltransferases/genetics , Hyphae/enzymology , Hyphae/genetics , Hyphae/growth & development , Hyphae/metabolism , Molecular Sequence Data , Neurospora crassa/genetics , Neurospora crassa/growth & development , Neurospora crassa/metabolism , Spores, Fungal/enzymology , Spores, Fungal/genetics , Spores, Fungal/metabolism
18.
Adv Genet ; 81: 33-82, 2013.
Article in English | MEDLINE | ID: mdl-23419716

ABSTRACT

The composition and organization of the cell walls from Saccharomyces cerevisiae, Candida albicans, Aspergillus fumigatus, Schizosaccharomyces pombe, Neurospora crassa, and Cryptococcus neoformans are compared and contrasted. These cell walls contain chitin, chitosan, ß-1,3-glucan, ß-1,6-glucan, mixed ß-1,3-/ß-1,4-glucan, α-1,3-glucan, melanin, and glycoproteins as major constituents. A comparison of these cell walls shows that there is a great deal of variability in fungal cell wall composition and organization. However, in all cases, the cell wall components are cross-linked together to generate a cell wall matrix. The biosynthesis and properties of each of the major cell wall components are discussed. The chitin and glucans are synthesized and extruded into the cell wall space by plasma membrane-associated chitin synthases and glucan synthases. The glycoproteins are synthesized by ER-associated ribosomes and pass through the canonical secretory pathway. Over half of the major cell wall proteins are modified by the addition of a glycosylphosphatidylinositol anchor. The cell wall glycoproteins are also modified by the addition of O-linked oligosaccharides, and their N-linked oligosaccharides are extensively modified during their passage through the secretory pathway. These cell wall glycoprotein posttranslational modifications are essential for cross-linking the proteins into the cell wall matrix. Cross-linking the cell wall components together is essential for cell wall integrity. The activities of four groups of cross-linking enzymes are discussed. Cell wall proteins function as cross-linking enzymes, structural elements, adhesins, and environmental stress sensors and protect the cell from environmental changes.


Subject(s)
Cell Wall/chemistry , Cell Wall/metabolism , Fungi/cytology , Fungi/metabolism , Glucans/biosynthesis , Glycoproteins/biosynthesis , Yeasts/cytology , Yeasts/metabolism
19.
PLoS One ; 7(8): e42374, 2012.
Article in English | MEDLINE | ID: mdl-22879952

ABSTRACT

A large number of cell wall proteins are encoded in the Neurospora crassa genome. Strains carrying gene deletions of 65 predicted cell wall proteins were characterized. Deletion mutations in two of these genes (wsc-1 and ham-7) have easily identified morphological and inhibitor-based defects. Their phenotypic characterization indicates that HAM-7 and WSC-1 function during cell-to-cell hyphal fusion and in cell wall integrity maintenance, respectively. wsc-1 encodes a transmembrane protein with extensive homology to the yeast Wsc family of sensor proteins. In N. crassa, WSC-1 (and its homolog WSC-2) activates the cell wall integrity MAK-1 MAP kinase pathway. The GPI-anchored cell wall protein HAM-7 is required for cell-to-cell fusion and the sexual stages of the N. crassa life cycle. Like WSC-1, HAM-7 is required for activating MAK-1. A Δwsc-1;Δham-7 double mutant fully phenocopies mutants lacking components of the MAK-1 MAP kinase cascade. The data identify WSC-1 and HAM-7 as the major cell wall sensors that regulate two distinct MAK-1-dependent cellular activities, cell wall integrity and hyphal anastomosis, respectively.


Subject(s)
Cell Wall/metabolism , Fungal Proteins/metabolism , Hyphae/cytology , MAP Kinase Signaling System , Membrane Fusion , Neurospora crassa/enzymology , Protein Kinases/metabolism , DNA Mutational Analysis , Enzyme Activation , Gene Deletion , Genetic Complementation Test , Histidine Kinase , Hyphae/metabolism , Mutant Proteins/metabolism , Neurospora crassa/cytology , Phenotype , Reproduction, Asexual
20.
PLoS One ; 7(6): e38872, 2012.
Article in English | MEDLINE | ID: mdl-22701726

ABSTRACT

The covalent cross-linking of cell wall proteins into the cell wall glucan/chitin matrix is an important step in the biogenesis of the fungal cell wall. We demonstrate that the Neurospora crassa DFG5 (NCU03770) and DCW1 (NCU08127) enzymes function in vivo to cross-link glycoproteins into the cell wall. Mutants lacking DFG5 or DCW1 release slightly elevated levels of cell wall proteins into their growth medium. Mutants lacking both DFG5 and DCW1 have substantially reduced levels of cell wall proteins in their cell walls and release large amounts of known cell wall proteins into the medium. DFG5 and DCW1 are members of the GH76 family of glycosyl hydrolases, which have specificity to recognize and cleave α-1,6-mannans. A model for incorporation of glycoproteins into the cell wall through the α-1,6-mannan core of the N-linked galactomannan is presented. In this model, DFG5 and DCW1 recognize the N-linked galactomannan present on glycoproteins and cross-link it into the cell wall glucan/chitin matrix.


Subject(s)
Cell Wall/metabolism , Genes, Fungal/genetics , Mannosidases/metabolism , Membrane Glycoproteins/metabolism , Models, Biological , Neurospora crassa/enzymology , Blotting, Western , Chitin/metabolism , Chromatography, Liquid , Cloning, Molecular , Galactose/analogs & derivatives , Glucans/metabolism , Mannans/metabolism , Mutation/genetics , Neurospora crassa/genetics , Rosaniline Dyes , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...