Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 151
Filter
1.
J Chem Phys ; 160(13)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38557852

ABSTRACT

Electron spin resonance pulsed dipolar spectroscopy (PDS) has become popular in protein 3D structure analysis. PDS studies yield distance distributions between a pair or multiple pairs of spin probes attached to protein molecules, which can be used directly in structural studies or as constraints in theoretical predictions. Double-quantum coherence (DQC) is a highly sensitive and accurate PDS technique to study protein structures in the solid state and under physiologically relevant conditions. In this work, we have derived analytical expressions for the DQC signal for a system with N-dipolar coupled spin-1/2 particles in the solid state. The expressions are integrated over the relevant spatial parameters to obtain closed form DQC signal expressions. These expressions contain the concentration-dependent "instantaneous diffusion" and the background signal. For micromolar and lower concentrations, these effects are negligible. An approximate analysis is provided for cases of finite pulses. The expressions obtained in this work should improve the analysis of DQC experimental data significantly, and the analytical approach could be extended easily to a wide range of magnetic resonance phenomena.

2.
Nucleic Acids Res ; 52(8): 4659-4675, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38554102

ABSTRACT

RexA and RexB function as an exclusion system that prevents bacteriophage T4rII mutants from growing on Escherichia coli λ phage lysogens. Recent data established that RexA is a non-specific DNA binding protein that can act independently of RexB to bias the λ bistable switch toward the lytic state, preventing conversion back to lysogeny. The molecular interactions underlying these activities are unknown, owing in part to a dearth of structural information. Here, we present the 2.05-Å crystal structure of the λ RexA dimer, which reveals a two-domain architecture with unexpected structural homology to the recombination-associated protein RdgC. Modelling suggests that our structure adopts a closed conformation and would require significant domain rearrangements to facilitate DNA binding. Mutagenesis coupled with electromobility shift assays, limited proteolysis, and double electron-electron spin resonance spectroscopy support a DNA-dependent conformational change. In vivo phenotypes of RexA mutants suggest that DNA binding is not a strict requirement for phage exclusion but may directly contribute to modulation of the bistable switch. We further demonstrate that RexA homologs from other temperate phages also dimerize and bind DNA in vitro. Collectively, these findings advance our mechanistic understanding of Rex functions and provide new evolutionary insights into different aspects of phage biology.


Subject(s)
Bacteriophage lambda , DNA-Binding Proteins , Models, Molecular , Viral Proteins , Bacteriophage lambda/genetics , Crystallography, X-Ray , Viral Proteins/metabolism , Viral Proteins/chemistry , Viral Proteins/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Protein Binding , Protein Multimerization , DNA, Viral/genetics , DNA, Viral/metabolism , Mutation , Lysogeny , Escherichia coli/virology , Escherichia coli/genetics , Escherichia coli/metabolism , DNA/metabolism , DNA/chemistry
3.
Res Sq ; 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37577617

ABSTRACT

Site directed spin labeling has enabled protein structure determination using electron spin resonance (ESR) pulsed dipolar spectroscopy (PDS). Small details in a distance distribution can be key to understanding important protein structure-function relationships. A major challenge has been to differentiate unimodal and overlapped multimodal distance distributions. They often yield similar distributions and dipolar signals. Current model-free distance reconstruction techniques such as Srivastava-Freed Singular Value Decomposition (SF-SVD) and Tikhonov regularization can suppress these small features in uncertainty and/or error bounds, despite being present. In this work, we demonstrate that continuous wavelet transform (CWT) can distinguish PDS signals from unimodal and multimodal distance distributions. We show that periodicity in CWT representation reflects unimodal distributions, which is masked for multimodal cases. This work is meant as a precursor to a cross-validation technique, which could indicate the modality of the distance distribution.

4.
Food Hydrocoll ; 1392023 May.
Article in English | MEDLINE | ID: mdl-37546699

ABSTRACT

Thaumatin, a potent sweet tasting protein extracted from the Katemfe Plant, is emerging as a natural alternative to synthetic non-nutritive sweeteners and flavor enhancer. As a food additive, its stability within the food matrix during thermal processing is of great interest to the food industry. When heated under neutral or basic conditions, thaumatin was found to lose its sweetness due to protein aggregation caused by sulfhydryl catalyzed disulfide bond interchange. At lower pH, while thaumatin was also found to lose sweetness after heating, it does so at a slower rate and shows more resistance to sweetness loss. SDS-PAGE indicated that thaumatin fragmented into multiple smaller pieces under heating in acidic pH. Using BEMPO-3, a lipophilic spin trap, we were able to detect the presence of a free-radical within the hydrophobic region of the protein during heating. Protein carbonyl content, a byproduct of protein oxidation, also increased upon heating, providing additional evidence for protein cleavage by a radical pathway. Hexyl gallate successfully inhibited the radical generation as well as protein carbonyl formation of thaumatin during heating.

5.
Nat Commun ; 14(1): 3204, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37268630

ABSTRACT

Lipid droplets (LDs) are dynamic organelles that contain an oil core mainly composed of triglycerides (TAG) that is surrounded by a phospholipid monolayer and LD-associated proteins called perilipins (PLINs). During LD biogenesis, perilipin 3 (PLIN3) is recruited to nascent LDs as they emerge from the endoplasmic reticulum. Here, we analyze how lipid composition affects PLIN3 recruitment to membrane bilayers and LDs, and the structural changes that occur upon membrane binding. We find that the TAG precursors phosphatidic acid and diacylglycerol (DAG) recruit PLIN3 to membrane bilayers and define an expanded Perilipin-ADRP-Tip47 (PAT) domain that preferentially binds DAG-enriched membranes. Membrane binding induces a disorder to order transition of alpha helices within the PAT domain and 11-mer repeats, with intramolecular distance measurements consistent with the expanded PAT domain adopting a folded but dynamic structure upon membrane binding. In cells, PLIN3 is recruited to DAG-enriched ER membranes, and this requires both the PAT domain and 11-mer repeats. This provides molecular details of PLIN3 recruitment to nascent LDs and identifies a function of the PAT domain of PLIN3 in DAG binding.


Subject(s)
Diglycerides , Perilipin-3 , Diglycerides/metabolism , Endoplasmic Reticulum/metabolism , Lipid Droplets/metabolism , Lipid Metabolism/physiology , Perilipin-1/metabolism , Perilipin-3/metabolism , Triglycerides/metabolism
6.
J Mol Biol ; 435(1): 167710, 2023 01 15.
Article in English | MEDLINE | ID: mdl-35777466

ABSTRACT

Complexins play a critical role in regulating SNARE-mediated exocytosis of synaptic vesicles. Evolutionary divergences in complexin function have complicated our understanding of the role these proteins play in inhibiting the spontaneous fusion of vesicles. Previous structural and functional characterizations of worm and mouse complexins have indicated the membrane curvature-sensing C-terminal domain of these proteins is responsible for differences in inhibitory function. We have characterized the structure and dynamics of the mCpx1 CTD in the absence and presence of membranes and membrane mimetics using NMR, ESR, and optical spectroscopies. In the absence of lipids, the mCpx1 CTD features a short helix near its N-terminus and is otherwise disordered. In the presence of micelles and small unilamellar vesicles, the mCpx1 CTD forms a discontinuous helical structure in its C-terminal 20 amino acids, with no preference for specific lipid compositions. In contrast, the mCpx1 CTD shows distinct compositional preferences in its interactions with large unilamellar vesicles. These studies identify structural divergences in the mCpx1 CTD relative to the wCpx1 CTD in regions that are known to be critical to the wCpx1 CTD's role in inhibiting spontaneous fusion of synaptic vesicles, suggesting a potential structural basis for evolutionary divergences in complexin function.1.


Subject(s)
Adaptor Proteins, Vesicular Transport , Nerve Tissue Proteins , Unilamellar Liposomes , Animals , Mice , Adaptor Proteins, Vesicular Transport/chemistry , Calcium/chemistry , Exocytosis , Membrane Fusion , Nerve Tissue Proteins/chemistry , Protein Binding , SNARE Proteins/metabolism , Synaptic Vesicles/chemistry , Unilamellar Liposomes/chemistry , Protein Domains
7.
Nat Chem ; 14(11): 1265-1269, 2022 11.
Article in English | MEDLINE | ID: mdl-36064970

ABSTRACT

Reduction of nitrite anions (NO2-) to nitric oxide (NO), nitrous oxide (N2O) and ultimately dinitrogen (N2) takes place in a variety of environments, including in the soil as part of the biogeochemical nitrogen cycle and in acidified nuclear waste. Nitrite reduction typically takes place within the coordination sphere of a redox-active transition metal. Here we show that Lewis acid coordination can substantially modify the reduction potential of this polyoxoanion to allow for its reduction under non-aqueous conditions (-0.74 V versus NHE). Detailed characterization confirms the formation of the borane-capped radical nitrite dianion (NO22-), which features a N(II) oxidation state. Protonation of the nitrite dianion results in the facile loss of nitric oxide (NO), whereas its reaction with NO results in disproportionation to nitrous oxide (N2O) and nitrite (NO2-). This system connects three redox levels in the global nitrogen cycle and provides fundamental insights into the conversion of NO2- to NO.


Subject(s)
Nitrites , Nitrous Oxide , Lewis Acids , Nitric Oxide , Nitrogen Dioxide , Oxidation-Reduction
8.
Appl Magn Reson ; 53(3-5): 699-715, 2022 May.
Article in English | MEDLINE | ID: mdl-35431460

ABSTRACT

CW saturation experiments are widely used in ESR studies of relaxation processes in proteins and lipids. We develop the theory of saturation in ESR spectra in terms of its close relation with that of 2D-ELDOR. Our treatment of saturation is then based on the microscopic order macroscopic disorder (MOMD) model and can be used to fit the full CW saturation spectrum, rather than fitting just the peak-peak amplitude as a function of microwave field B 1 as is commonly done. This requires fewer experiments to yield effects on T 1, as well as provides a more extensive dynamic structural picture, for example, for scanning experiments on different protein sites. The code is released as a publicly available software package in Python that can be used to fit CW saturation spectra from biological samples of interest.

9.
J Phys Chem B ; 126(13): 2452-2465, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35333061

ABSTRACT

We describe the application of the microscopic-order-macroscopic-disorder (MOMD) approach, developed for the analysis of dynamic 2H NMR lineshapes in the solid state, to unravel interactions among the constituents of metal-organic frameworks (MOFs) that comprise mobile components. MOMD was applied recently to University of Windsor Dynamic Material (UWDM) MOFs with one mobile crown ether per cavity. In this work, we study UWDM-9-d4, which comprises a mobile 2H-labeled phenyl-ring residue along with an isotopically unlabeled 24C8 crown ether. We also study UiO-68-d4, which is structurally similar to UWDM-9-d4 but lacks the crown ether. The physical picture consists of the NMR probe─the C-D bonds of the phenyl-d4 rotor─diffusing locally (diffusion tensor R) in the presence of a local ordering potential, u. For UiO-68-d4, we find it sufficient to expand u in terms of four real Wigner functions, D0|K|L, overall 2-3 kT in magnitude, with R∥ relatively fast, and R⊥ in the (2.8-5.0) × 102 s-1 range. For UWDM-9-d4, u requires only two terms 2-3 kT in magnitude and slower rate constants R∥ and R⊥. In the more crowded macrocycle-containing UWDM-9-d4 cavity, phenyl-d4 dynamics is more isotropic and is described by a simpler ordering potential. This is ascribed to cooperative phenyl-ring/macrocycle motion, which yields a dynamic structure more uniform in character. The experimental 2H spectra used here were analyzed previously with a multi-simple-mode (MSM) approach where several independent simple motional modes are combined. Where possible, similar features have been identified and used to compare the two approaches.


Subject(s)
Crown Ethers , Metal-Organic Frameworks , Diffusion , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
10.
J Phys Chem B ; 126(6): 1202-1211, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35128920

ABSTRACT

We have developed the stochastic microscopic-order-macroscopic-disorder (MOMD) approach for elucidating dynamic structures in the solid-state from 2H NMR lineshapes. In MOMD, the probe experiences an effective/collective motional mode. The latter is described by a potential, u, which represents the local spatial-restrictions, a local-motional diffusion tensor, R, and key features of local geometry. Previously we applied MOMD to the well-structured core domain of the 3-fold-symmetric twisted polymorph of the Aß40-amyloid fibril. Here, we apply it to the N-terminal domain of this fibril. We find that the dynamic structures of the two domains are largely similar but differ in the magnitude and complexity of the key physical parameters. This interpretation differs from previous multisimple-mode (MSM) interpretations of the same experimental data. MSM used for the two domains different combinations of simple motional modes taken to be independent. For the core domain, MOMD and MSM disagree on the character of the dynamic structure. For the N-terminal domain, they even disagree on whether this chain segment is structurally ordered (MOMD finds that it is), and whether it undergoes a phase transition at 260 K where bulklike water located in the fibril matrix freezes (MOMD finds that it does not). These are major differences associated with an important system. While the MOMD description is a physically sound one, there are drawbacks in the MSM descriptions. The results obtained in this study promote our understanding of the dynamic structure of protein aggregates. Thus, they contribute to the effort to pharmacologically control neurodegenerative disorders believed to be caused by such aggregates.


Subject(s)
Amyloid , Protein Aggregates , Amyloid/chemistry , Amyloid beta-Peptides/chemistry , Diffusion , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
12.
Biophys J ; 121(2): 207-227, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34929193

ABSTRACT

Entry of coronaviruses into host cells is mediated by the viral spike protein. Previously, we identified the bona fide fusion peptides (FPs) for severe acute respiratory syndrome coronavirus ("SARS-1") and severe acute respiratory syndrome coronavirus-2 ("SARS-2") using electron spin resonance spectroscopy. We also found that their FPs induce membrane ordering in a Ca2+-dependent fashion. Here we study which negatively charged residues in SARS-1 FP are involved in this binding, to build a topological model and clarify the role of Ca2+. Our systematic mutation study on the SARS-1 FP shows that all six negatively charged residues contribute to the FP's membrane ordering activity, with D812 the dominant residue. The corresponding SARS-2 residue D830 plays an equivalent role. We provide a topological model of how the FP binds Ca2+ ions: its two segments FP1 and FP2 each bind one Ca2+. The binding of Ca2+, the folding of FP (both studied by isothermal titration calorimetry experiments), and the ordering activity correlate very well across the mutants, suggesting that the Ca2+ helps the folding of FP in membranes to enhance the ordering activity. Using a novel pseudotyped viral particle-liposome methodology, we monitored the membrane ordering induced by the FPs in the whole spike protein in its trimer form in real time. We found that the SARS-1 and SARS-2 pseudotyped viral particles also induce membrane ordering to the extent that separate FPs do, and mutations of the negatively charged residues also significantly suppress the membrane ordering activity. However, the slower kinetics of the FP ordering activity versus that of the pseudotyped viral particle suggest the need for initial trimerization of the FPs.


Subject(s)
COVID-19 , Membrane Fusion , Humans , Peptides , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/genetics
13.
bioRxiv ; 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34909776

ABSTRACT

Coronaviruses are a major infectious disease threat, and include the human pathogens of zoonotic origin SARS-CoV ("SARS-1"), SARS-CoV-2 ("SARS-2") and MERS-CoV ("MERS"). Entry of coronaviruses into host cells is mediated by the viral spike (S) protein. Previously, we identified that the domain immediately downstream of the S2' cleavage site is the bona fide FP (amino acids 798-835) for SARS-1 using ESR spectroscopy technology. We also found that the SARS-1 FP induces membrane ordering in a Ca 2+ dependent fashion. In this study, we want to know which residues are involved in this Ca 2+ binding, to build a topological model and to understand the role of the Ca2+. We performed a systematic mutation study on the negatively charged residues on the SARS-1 FP. While all six negatively charged residues contributes to the membrane ordering activity of the FP to some extent, D812 is the most important residue. We provided a topological model of how the FP binds Ca 2+ ions: both FP1 and FP2 bind one Ca 2+ ion, and there are two binding sites in FP1 and three in FP2. We also found that the corresponding residue D830 in the SARS-2 FP plays a similar critical role. ITC experiments show that the binding energies between the FP and Ca 2+ as well as between the FP and membranes also decreases for all mutants. The binding of Ca 2+ , the folding of FP and the ordering activity correlated very well across the mutants, suggesting that the function of the Ca 2+ is to help to folding of FP in membranes to enhance its activity. Using a novel pseudotyped virus particle (PP)-liposome methodology, we monitored the membrane ordering induced by the FPs in the whole S proteins in its trimer form in real time. We found that the SARS-1 and SARS-2 PPs also induce membrane ordering as the separate FPs do, and the mutations of the negatively charged residues also greatly reduce the membrane ordering activity. However, the difference in kinetic between the PP and FP indicates a possible role of FP trimerization. This finding could lead to therapeutic solutions that either target the FP-calcium interaction or block the Ca 2+ channel to combat the ongoing COVID-19 pandemic.

14.
J Am Chem Soc ; 143(43): 17875-17890, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34664948

ABSTRACT

Distance distribution information obtained by pulsed dipolar EPR spectroscopy provides an important contribution to many studies in structural biology. Increasingly, such information is used in integrative structural modeling, where it delivers unique restraints on the width of conformational ensembles. In order to ensure reliability of the structural models and of biological conclusions, we herein define quality standards for sample preparation and characterization, for measurements of distributed dipole-dipole couplings between paramagnetic labels, for conversion of the primary time-domain data into distance distributions, for interpreting these distributions, and for reporting results. These guidelines are substantiated by a multi-laboratory benchmark study and by analysis of data sets with known distance distribution ground truth. The study and the guidelines focus on proteins labeled with nitroxides and on double electron-electron resonance (DEER aka PELDOR) measurements and provide suggestions on how to proceed analogously in other cases.


Subject(s)
Cyclic N-Oxides/chemistry , Electron Spin Resonance Spectroscopy/standards , Proteins/chemistry , Spin Labels , Benchmarking , Electron Spin Resonance Spectroscopy/methods , Reproducibility of Results
15.
mBio ; 12(4): e0154821, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34425706

ABSTRACT

During replication of herpesviruses, capsids escape from the nucleus into the cytoplasm by budding at the inner nuclear membrane. This unusual process is mediated by the viral nuclear egress complex (NEC) that deforms the membrane around the capsid by oligomerizing into a hexagonal, membrane-bound scaffold. Here, we found that highly basic membrane-proximal regions (MPRs) of the NEC alter lipid order by inserting into the lipid headgroups and promote negative Gaussian curvature. We also find that the electrostatic interactions between the MPRs and the membranes are essential for membrane deformation. One of the MPRs is phosphorylated by a viral kinase during infection, and the corresponding phosphomimicking mutations block capsid nuclear egress. We show that the same phosphomimicking mutations disrupt the NEC-membrane interactions and inhibit NEC-mediated budding in vitro, providing a biophysical explanation for the in vivo phenomenon. Our data suggest that the NEC generates negative membrane curvature by both lipid ordering and protein scaffolding and that phosphorylation acts as an off switch that inhibits the membrane-budding activity of the NEC to prevent capsid-less budding. IMPORTANCE Herpesviruses are large viruses that infect nearly all vertebrates and some invertebrates and cause lifelong infections in most of the world's population. During replication, herpesviruses export their capsids from the nucleus into the cytoplasm by an unusual mechanism in which the viral nuclear egress complex (NEC) deforms the nuclear membrane around the capsid. However, how membrane deformation is achieved is unclear. Here, we show that the NEC from herpes simplex virus 1, a prototypical herpesvirus, uses clusters of positive charges to bind membranes and order membrane lipids. Reducing the positive charge or introducing negative charges weakens the membrane deforming ability of the NEC. We propose that the virus employs electrostatics to deform nuclear membrane around the capsid and can control this process by changing the NEC charge through phosphorylation. Blocking NEC-membrane interactions could be exploited as a therapeutic strategy.


Subject(s)
Capsid/metabolism , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/physiology , Lipid Metabolism , Nuclear Envelope/metabolism , Virus Release , Animals , Cell Nucleus/metabolism , Chlorocebus aethiops , Humans , Nuclear Envelope/virology , Phosphorylation , Static Electricity , Vero Cells , Virus Assembly , Virus Replication
16.
J Am Chem Soc ; 143(25): 9314-9319, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34154323

ABSTRACT

All radical S-adenosylmethionine (radical-SAM) enzymes, including the noncanonical radical-SAM enzyme diphthamide biosynthetic enzyme Dph1-Dph2, require at least one [4Fe-4S](Cys)3 cluster for activity. It is well-known in the radical-SAM enzyme community that the [4Fe-4S](Cys)3 cluster is extremely air-sensitive and requires strict anaerobic conditions to reconstitute activity in vitro. Thus, how such enzymes function in vivo in the presence of oxygen in aerobic organisms is an interesting question. Working on yeast Dph1-Dph2, we found that consistent with the known oxygen sensitivity, the [4Fe-4S] cluster is easily degraded into a [3Fe-4S] cluster. Remarkably, the small iron-containing protein Dph3 donates one Fe atom to convert the [3Fe-4S] cluster in Dph1-Dph2 to a functional [4Fe-4S] cluster during the radical-SAM enzyme catalytic cycle. This mechanism to maintain radical-SAM enzyme activity in aerobic environments is likely general, and Dph3-like proteins may exist to keep other radical-SAM enzymes functional in aerobic environments.


Subject(s)
Histidine/analogs & derivatives , Iron-Sulfur Proteins/metabolism , Repressor Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Dithionite/metabolism , Histidine/biosynthesis , Iron/chemistry , Iron-Sulfur Proteins/chemistry , Peptide Elongation Factor 2/metabolism , Repressor Proteins/chemistry , S-Adenosylmethionine/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/chemistry
17.
J Phys Chem A ; 125(20): 4480-4487, 2021 May 27.
Article in English | MEDLINE | ID: mdl-34009996

ABSTRACT

Noise impedes experimental studies by reducing signal resolution and/or suppressing weak signals. Signal averaging and filtering are the primary methods used to reduce noise, but they have limited effectiveness and lack capabilities to recover signals at low signal-to-noise ratios (SNRs). We utilize a wavelet transform-based approach to effectively remove noise from spectroscopic data. The wavelet denoising method we use is a significant improvement on standard wavelet denoising approaches. We demonstrate its power in extracting signals from noisy spectra on a variety of signal types ranging from hyperfine lines to overlapped peaks to weak peaks overlaid on strong ones, drawn from electron-spin-resonance spectroscopy. The results show that one can accurately extract details of complex spectra, including retrieval of very weak ones. It accurately recovers signals at an SNR of ∼1 and improves the SNR by about 3 orders of magnitude with high fidelity. Our examples show that one is now able to address weaker SNR signals much better than by previous methods. This new wavelet approach can be successfully applied to other spectroscopic signals.

18.
J Mol Biol ; 433(10): 166946, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33744314

ABSTRACT

Coronaviruses are a major infectious disease threat, and include the zoonotic-origin human pathogens SARS-CoV-2, SARS-CoV, and MERS-CoV (SARS-2, SARS-1, and MERS). Entry of coronaviruses into host cells is mediated by the spike (S) protein. In our previous ESR studies, the local membrane ordering effect of the fusion peptide (FP) of various viral glycoproteins including the S of SARS-1 and MERS has been consistently observed. We previously determined that the sequence immediately downstream from the S2' cleavage site is the bona fide SARS-1 FP. In this study, we used sequence alignment to identify the SARS-2 FP, and studied its membrane ordering effect. Although there are only three residue differences, SARS-2 FP induces even greater membrane ordering than SARS-1 FP, possibly due to its greater hydrophobicity. This may be a reason that SARS-2 is better able to infect host cells. In addition, the membrane binding enthalpy for SARS-2 is greater. Both the membrane ordering of SARS-2 and SARS-1 FPs are dependent on Ca2+, but that of SARS-2 shows a greater response to the presence of Ca2+. Both FPs bind two Ca2+ ions as does SARS-1 FP, but the two Ca2+ binding sites of SARS-2 exhibit greater cooperativity. This Ca2+ dependence by the SARS-2 FP is very ion-specific. These results show that Ca2+ is an important regulator that interacts with the SARS-2 FP and thus plays a significant role in SARS-2 viral entry. This could lead to therapeutic solutions that either target the FP-calcium interaction or block the Ca2+ channel.


Subject(s)
Calcium/metabolism , Cell Membrane/metabolism , SARS-CoV-2/metabolism , Severe acute respiratory syndrome-related coronavirus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Viral Fusion Proteins/metabolism , Amino Acid Sequence , Binding Sites , Calcium/pharmacology , Calorimetry , Cell Membrane/drug effects , Cell Membrane/virology , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Severe acute respiratory syndrome-related coronavirus/drug effects , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Thermodynamics , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/genetics , Virus Internalization/drug effects
19.
J Chem Phys ; 154(8): 084115, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33639766

ABSTRACT

Two-dimensional electron-electron double resonance (2D-ELDOR) provides extensive insight into molecular motions. Recent developments permitting experiments at higher frequencies (95 GHz) provide molecular orientational resolution, enabling a clearer description of the nature of the motions. In previous work, we provided simulations for the case of domain motions within proteins that are themselves slowly tumbling in a solution. In order to perform these simulations, it was found that the standard approach of solving the relevant stochastic Liouville equation using the efficient Lanczos algorithm for this case breaks down, so algorithms were employed that rely on the Arnoldi iteration. While they lead to accurate simulations, they are very time-consuming. In this work, we focus on a variant known as the rational Arnoldi algorithm. We show that this can achieve a significant reduction in computation time. The stochastic Liouville matrix, which is of very large dimension, N, is first reduced to a much smaller dimension, m, e.g., from N ∼ O(104) to m ∼ 60, that spans the relevant Krylov subspace from which the spectrum is predicted. This requires the selection of the m frequency shifts to be utilized. A method of adaptive shift choice is introduced to optimize this selection. We also find that these procedures help in optimizing the pruning procedure that greatly reduces the dimension of the initial N dimensional stochastic Liouville matrix in such subsequent computations.


Subject(s)
Algorithms , Molecular Dynamics Simulation , Proteins/chemistry , Electron Spin Resonance Spectroscopy , Stochastic Processes , Time Factors
20.
J Am Chem Soc ; 142(51): 21368-21381, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33305945

ABSTRACT

Exchange processes which include conformational change, protonation/deprotonation, and binding equilibria are routinely studied by 2D exchange NMR techniques, where information about the exchange of nuclei between environments with different NMR shifts is obtained from the development of cross-peaks. Whereas 2D NMR enables the real time study of millisecond and slower exchange processes, 2D ESR in the form of 2D-ELDOR (two-dimensional electron-electron double resonance) has the potential for such studies over the nanosecond to microsecond real time scales. Cross-peak development due to chemical exchange has been seen previously for semiquinones in ESR, but this is not possible for most common ESR probes, such as nitroxides, studied at typical ESR frequencies because, unlike NMR, the exchanging states yield ESR signals that are not resolved from each other within their respective line widths. But at 95 GHz, it becomes possible to resolve them in many cases because of the increased g-factor resolution. The 95 GHz instrumental developments occurring at ACERT now enable such studies. We demonstrate these new capabilities in two studies: (A) the protonation/deprotonation process for a pH-sensitive imidazoline spin label in aqueous solution where the exchange rate and the population ratio of the exchanging states are controlled by the concentration and pH of the buffer solution, respectively, and (B) a nitroxide radical partitioning between polar (aqueous) and nonpolar (phospholipid) environments in multilamellar lipid vesicles, where the cross-peak development arises from the exchange of the nitroxide between the two phases. This work represents the first example of the observation and analysis of cross-peaks arising from chemical exchange processes involving nitroxide spin labels.


Subject(s)
Electron Spin Resonance Spectroscopy , Buffers , Hydrogen-Ion Concentration , Imidazolines/chemistry , Kinetics , Magnetic Resonance Spectroscopy , Phospholipids/chemistry , Protons , Spin Labels , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...