Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 7973, 2024 04 04.
Article in English | MEDLINE | ID: mdl-38575687

ABSTRACT

In patients suffering from cerebral ischemic stroke, there is an urgent need for treatments to protect stressed yet viable brain cells. Recently, treatment strategies that induce neuronal activity have been shown to be neuroprotective. Here, we hypothesized that neuronal activation might maintain or trigger the astrocyte-to-neuron lactate shuttle (ANLS), whereby lactate is released from astrocytes to support the energy requirements of ATP-starved hypoxic neurons, and this leads to the observed neuroprotection. We tested this by using a human cell based in vitro model of the ischemic penumbra and investigating whether lactate might be neuroprotective in this setting. We found that lactate transporters are involved in the neuroprotective effect mediated by neuronal activation. Furthermore, we showed that lactate exogenously administered before hypoxia correlated with neuroprotection in our cellular model. In addition, stimulation of astrocyte with consequent endogenous production of lactate resulted in neuroprotection. To conclude, here we presented evidence that lactate transport into neurons contributes to neuroprotection during hypoxia providing a potential basis for therapeutic approaches in ischemic stroke.


Subject(s)
Ischemic Stroke , Stroke , Humans , Lactic Acid , Neuroprotection , Brain , Astrocytes , Hypoxia
2.
Stem Cell Reports ; 18(11): 2222-2239, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37863044

ABSTRACT

Mechanisms that underlie homeostatic plasticity have been extensively investigated at single-cell levels in animal models, but are less well understood at the network level. Here, we used microelectrode arrays to characterize neuronal networks following induction of homeostatic plasticity in human induced pluripotent stem cell (hiPSC)-derived glutamatergic neurons co-cultured with rat astrocytes. Chronic suppression of neuronal activity through tetrodotoxin (TTX) elicited a time-dependent network re-arrangement. Increased expression of AMPA receptors and the elongation of axon initial segments were associated with increased network excitability following TTX treatment. Transcriptomic profiling of TTX-treated neurons revealed up-regulated genes related to extracellular matrix organization, while down-regulated genes related to cell communication; also astrocytic gene expression was found altered. Overall, our study shows that hiPSC-derived neuronal networks provide a reliable in vitro platform to measure and characterize homeostatic plasticity at network and single-cell levels; this platform can be extended to investigate altered homeostatic plasticity in brain disorders.


Subject(s)
Induced Pluripotent Stem Cells , Neuronal Plasticity , Humans , Rats , Animals , Cells, Cultured , Neuronal Plasticity/physiology , Neurons/metabolism , Coculture Techniques , Tetrodotoxin/pharmacology
3.
Brain ; 146(12): 5153-5167, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37467479

ABSTRACT

Dravet syndrome is a severe epileptic encephalopathy, characterized by (febrile) seizures, behavioural problems and developmental delay. Eighty per cent of patients with Dravet syndrome have a mutation in SCN1A, encoding Nav1.1. Milder clinical phenotypes, such as GEFS+ (generalized epilepsy with febrile seizures plus), can also arise from SCN1A mutations. Predicting the clinical phenotypic outcome based on the type of mutation remains challenging, even when the same mutation is inherited within one family. This clinical and genetic heterogeneity adds to the difficulties of predicting disease progression and tailoring the prescription of anti-seizure medication. Understanding the neuropathology of different SCN1A mutations may help to predict the expected clinical phenotypes and inform the selection of best-fit treatments. Initially, the loss of Na+-current in inhibitory neurons was recognized specifically to result in disinhibition and consequently seizure generation. However, the extent to which excitatory neurons contribute to the pathophysiology is currently debated and might depend on the patient clinical phenotype or the specific SCN1A mutation. To examine the genotype-phenotype correlations of SCN1A mutations in relation to excitatory neurons, we investigated a panel of patient-derived excitatory neuronal networks differentiated on multi-electrode arrays. We included patients with different clinical phenotypes, harbouring various SCN1A mutations, along with a family in which the same mutation led to febrile seizures, GEFS+ or Dravet syndrome. We hitherto describe a previously unidentified functional excitatory neuronal network phenotype in the context of epilepsy, which corresponds to seizurogenic network prediction patterns elicited by proconvulsive compounds. We found that excitatory neuronal networks were affected differently, depending on the type of SCN1A mutation, but did not segregate according to clinical severity. Specifically, loss-of-function mutations could be distinguished from missense mutations, and mutations in the pore domain could be distinguished from mutations in the voltage sensing domain. Furthermore, all patients showed aggravated neuronal network responses at febrile temperatures compared with controls. Finally, retrospective drug screening revealed that anti-seizure medication affected GEFS+ patient- but not Dravet patient-derived neuronal networks in a patient-specific and clinically relevant manner. In conclusion, our results indicate a mutation-specific excitatory neuronal network phenotype, which recapitulates the foremost clinically relevant features, providing future opportunities for precision therapies.


Subject(s)
Epilepsies, Myoclonic , Epilepsy, Generalized , Seizures, Febrile , Humans , NAV1.1 Voltage-Gated Sodium Channel/genetics , Retrospective Studies , Mutation/genetics , Epilepsy, Generalized/genetics , Phenotype , Seizures, Febrile/genetics , Seizures, Febrile/diagnosis , Neurons
4.
Stem Cell Reports ; 18(8): 1686-1700, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37419110

ABSTRACT

Human induced pluripotent stem cell (hiPSC)-derived neuronal networks on multi-electrode arrays (MEAs) provide a unique phenotyping tool to study neurological disorders. However, it is difficult to infer cellular mechanisms underlying these phenotypes. Computational modeling can utilize the rich dataset generated by MEAs, and advance understanding of disease mechanisms. However, existing models lack biophysical detail, or validation and calibration to relevant experimental data. We developed a biophysical in silico model that accurately simulates healthy neuronal networks on MEAs. To demonstrate the potential of our model, we studied neuronal networks derived from a Dravet syndrome (DS) patient with a missense mutation in SCN1A, encoding sodium channel NaV1.1. Our in silico model revealed that sodium channel dysfunctions were insufficient to replicate the in vitro DS phenotype, and predicted decreased slow afterhyperpolarization and synaptic strengths. We verified these changes in DS patient-derived neurons, demonstrating the utility of our in silico model to predict disease mechanisms.


Subject(s)
Epilepsies, Myoclonic , Induced Pluripotent Stem Cells , Humans , NAV1.1 Voltage-Gated Sodium Channel/genetics , Epilepsies, Myoclonic/genetics , Neurons/physiology , Mutation, Missense , Mutation
5.
Cell Mol Neurobiol ; 43(7): 3137-3160, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37380886

ABSTRACT

Translation of neuroprotective treatment effects from experimental animal models to patients with cerebral ischemia has been challenging. Since pathophysiological processes may vary across species, an experimental model to clarify human-specific neuronal pathomechanisms may help. We conducted a scoping review of the literature on human neuronal in vitro models that have been used to study neuronal responses to ischemia or hypoxia, the parts of the pathophysiological cascade that have been investigated in those models, and evidence on effects of interventions. We included 147 studies on four different human neuronal models. The majority of the studies (132/147) was conducted in SH-SY5Y cells, which is a cancerous cell line derived from a single neuroblastoma patient. Of these, 119/132 used undifferentiated SH-SY5Y cells, that lack many neuronal characteristics. Two studies used healthy human induced pluripotent stem cell derived neuronal networks. Most studies used microscopic measures and established hypoxia induced cell death, oxidative stress, or inflammation. Only one study investigated the effect of hypoxia on neuronal network functionality using micro-electrode arrays. Treatment targets included oxidative stress, inflammation, cell death, and neuronal network stimulation. We discuss (dis)advantages of the various model systems and propose future perspectives for research into human neuronal responses to ischemia or hypoxia.


Subject(s)
Induced Pluripotent Stem Cells , Neuroblastoma , Animals , Humans , Cell Line, Tumor , Ischemia , Hypoxia
6.
Bioengineering (Basel) ; 10(4)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37106636

ABSTRACT

With the advent of human-induced pluripotent stem cells (hiPSCs) and differentiation protocols, methods to create in-vitro human-derived neuronal networks have been proposed. Although monolayer cultures represent a valid model, adding three-dimensionality (3D) would make them more representative of an in-vivo environment. Thus, human-derived 3D structures are becoming increasingly used for in-vitro disease modeling. Achieving control over the final cell composition and investigating the exhibited electrophysiological activity is still a challenge. Thence, methodologies to create 3D structures with controlled cellular density and composition and platforms capable of measuring and characterizing the functional aspects of these samples are needed. Here, we propose a method to rapidly generate neurospheroids of human origin with control over cell composition that can be used for functional investigations. We show a characterization of the electrophysiological activity exhibited by the neurospheroids by using micro-electrode arrays (MEAs) with different types (i.e., passive, C-MOS, and 3D) and number of electrodes. Neurospheroids grown in free culture and transferred on MEAs exhibited functional activity that can be chemically and electrically modulated. Our results indicate that this model holds great potential for an in-depth study of signal transmission to drug screening and disease modeling and offers a platform for in-vitro functional testing.

7.
Acta Biomater ; 158: 281-291, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36563774

ABSTRACT

Understanding how the spatial organization of a neural network affects its activity represents a leading issue in neuroscience. Thanks to their accessibility and easy handling, in vitro studies remain an essential tool to investigate the relationship between the structure and function of a neuronal network. Among all the patterning techniques, ink-jet printing acquired great interest thanks to its direct-write approach, which allows the patterned substrate realization without mold, leading to a considerable saving of both cost and time. However, the inks commonly used give the possibility to control only the structure of a neuronal network, leaving aside the functional aspect. In this work, we synthesize a photosensitive ink combining the rheological and bioadhesive properties of chitosan with the plasmonic properties of gold nanorods, obtaining an ink able to control both the spatial organization of a two-dimensional neuronal network and its activity through photothermal effect. After the ink characterization, we demonstrate that it is possible to print, with high precision, different geometries on a microelectrode array. In this way, it is possible obtaining a patterned device to control the structure of a neuronal network, to record its activity and to modulate it via photothermal effect. Finally, to our knowledge, we report the first evidence of photothermal inhibition of human neurons activity. STATEMENT OF SIGNIFICANCE: Patterned cell cultures remain the most efficient and simple tool for linking structural and functional studies, especially in the neuronal field. Ink-jet printing is the technique with which it is possible to realize patterned structures in the fastest, simple, versatile and low-cost way. However, the inks currently used permit the control only of the neuronal network structure but do not allow the control-modulation of the network activity. In this study, we realize and characterize a photosensitive bioink with which it is possible to drive both the structure and the activity of a neuronal network. Moreover, we report the first evidence of activity inhibition by the photothermal effect on human neurons as far as we know.


Subject(s)
Nanotubes , Printing , Humans , Printing/methods , Neurons , Cell Culture Techniques , Ink
8.
Carbohydr Polym ; 297: 120049, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36184185

ABSTRACT

Most in vitro functional and morphological studies for developing nervous system have been performed using traditional monolayer cultures onto supports modified by extracellular matrix components or synthetic biopolymers. These biomolecules act as adhesion factors essential for neuronal growth and differentiation. In this study, the use of chitosan as adhesion factor was investigated. Primary rat neurons and neurons differentiated from human induced pluripotent stem cells were cultured onto chitosan and standard adhesion factors modified supports. The initiation, elongation and branching of neuritic processes, synaptogenesis and electrophysiological behavior were studied. The biopolymers affected neurites outgrowth in a time dependent manner; in particular, chitosan promoted neuronal polarity in both cell cultures. These results indicate chitosan as a valid adhesion factor alternative to the standard ones, with the advantage that it can be used both in 2D and 3D cultures, acting as a bridge between these in vitro models.


Subject(s)
Chitosan , Induced Pluripotent Stem Cells , Animals , Cells, Cultured , Chitosan/metabolism , Chitosan/pharmacology , Humans , Neurites/metabolism , Neurons/metabolism , Rats
9.
Neuroinformatics ; 20(4): 1077-1092, 2022 10.
Article in English | MEDLINE | ID: mdl-35680724

ABSTRACT

Functional assessment of in vitro neuronal networks-of relevance for disease modelling and drug testing-can be performed using multi-electrode array (MEA) technology. However, the handling and processing of the large amount of data typically generated in MEA experiments remains a huge hurdle for researchers. Various software packages have been developed to tackle this issue, but to date, most are either not accessible through the links provided by the authors or only tackle parts of the analysis. Here, we present ''MEA-ToolBox'', a free open-source general MEA analytical toolbox that uses a variety of literature-based algorithms to process the data, detect spikes from raw recordings, and extract information at both the single-channel and array-wide network level. MEA-ToolBox extracts information about spike trains, burst-related analysis and connectivity metrics without the need of manual intervention. MEA-ToolBox is tailored for comparing different sets of measurements and will analyze data from multiple recorded files placed in the same folder sequentially, thus considerably streamlining the analysis pipeline. MEA-ToolBox is available with a graphic user interface (GUI) thus eliminating the need for any coding expertise while offering functionality to inspect, explore and post-process the data. As proof-of-concept, MEA-ToolBox was tested on earlier-published MEA recordings from neuronal networks derived from human induced pluripotent stem cells (hiPSCs) obtained from healthy subjects and patients with neurodevelopmental disorders. Neuronal networks derived from patient's hiPSCs showed a clear phenotype compared to those from healthy subjects, demonstrating that the toolbox could extract useful parameters and assess differences between normal and diseased profiles.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Action Potentials/physiology , Microelectrodes , Neurons/physiology , Algorithms
10.
Int J Mol Sci ; 23(5)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35269895

ABSTRACT

In the penumbra of a brain infarct, neurons initially remain structurally intact, but perfusion is insufficient to maintain neuronal activity at physiological levels. Improving neuronal recovery in the penumbra has large potential to advance recovery of stroke patients, but penumbral pathology is incompletely understood, and treatments are scarce. We hypothesize that low activity in the penumbra is associated with apoptosis and thus contributes to irreversible neuronal damage. We explored the putative relationship between low neuronal activity and apoptosis in cultured neurons exposed to variable durations of hypoxia or TTX. We combined electrophysiology and live apoptosis staining in 42 cultures, and compared effects of hypoxia and TTX silencing in terms of network activity and apoptosis. Hypoxia rapidly reduced network activity, but cultures showed limited apoptosis during the first 12 h. After 24 h, widespread apoptosis had occurred. This was associated with full activity recovery observed upon reoxygenation within 12 h, but not after 24 h. Similarly, TTX exposure strongly reduced activity, with full recovery upon washout within 12 h, but not after 24 h. Mean temporal evolution of apoptosis in TTX-treated cultures was the same as in hypoxic cultures. These results suggest that prolonged low activity may be a common factor in the pathways towards apoptosis.


Subject(s)
Brain Ischemia , Stroke , Apoptosis , Brain Ischemia/metabolism , Humans , Hypoxia/metabolism , Neurons/metabolism , Stroke/metabolism
11.
Mol Psychiatry ; 27(1): 1-18, 2022 01.
Article in English | MEDLINE | ID: mdl-33972691

ABSTRACT

Activity in the healthy brain relies on a concerted interplay of excitation (E) and inhibition (I) via balanced synaptic communication between glutamatergic and GABAergic neurons. A growing number of studies imply that disruption of this E/I balance is a commonality in many brain disorders; however, obtaining mechanistic insight into these disruptions, with translational value for the patient, has typically been hampered by methodological limitations. Cadherin-13 (CDH13) has been associated with autism and attention-deficit/hyperactivity disorder. CDH13 localizes at inhibitory presynapses, specifically of parvalbumin (PV) and somatostatin (SST) expressing GABAergic neurons. However, the mechanism by which CDH13 regulates the function of inhibitory synapses in human neurons remains unknown. Starting from human-induced pluripotent stem cells, we established a robust method to generate a homogenous population of SST and MEF2C (PV-precursor marker protein) expressing GABAergic neurons (iGABA) in vitro, and co-cultured these with glutamatergic neurons at defined E/I ratios on micro-electrode arrays. We identified functional network parameters that are most reliably affected by GABAergic modulation as such, and through alterations of E/I balance by reduced expression of CDH13 in iGABAs. We found that CDH13 deficiency in iGABAs decreased E/I balance by means of increased inhibition. Moreover, CDH13 interacts with Integrin-ß1 and Integrin-ß3, which play opposite roles in the regulation of inhibitory synaptic strength via this interaction. Taken together, this model allows for standardized investigation of the E/I balance in a human neuronal background and can be deployed to dissect the cell-type-specific contribution of disease genes to the E/I balance.


Subject(s)
Cadherins , GABAergic Neurons , Parvalbumins , Cadherins/metabolism , GABAergic Neurons/metabolism , Humans , Induced Pluripotent Stem Cells , Integrins/metabolism , Parvalbumins/metabolism , Synapses/metabolism
12.
Autophagy ; 18(2): 423-442, 2022 02.
Article in English | MEDLINE | ID: mdl-34286667

ABSTRACT

Macroautophagy (hereafter referred to as autophagy) is a finely tuned process of programmed degradation and recycling of proteins and cellular components, which is crucial in neuronal function and synaptic integrity. Mounting evidence implicates chromatin remodeling in fine-tuning autophagy pathways. However, this epigenetic regulation is poorly understood in neurons. Here, we investigate the role in autophagy of KANSL1, a member of the nonspecific lethal complex, which acetylates histone H4 on lysine 16 (H4K16ac) to facilitate transcriptional activation. Loss-of-function of KANSL1 is strongly associated with the neurodevelopmental disorder Koolen-de Vries Syndrome (KdVS). Starting from KANSL1-deficient human induced-pluripotent stem cells, both from KdVS patients and genome-edited lines, we identified SOD1 (superoxide dismutase 1), an antioxidant enzyme, to be significantly decreased, leading to a subsequent increase in oxidative stress and autophagosome accumulation. In KANSL1-deficient neurons, autophagosome accumulation at excitatory synapses resulted in reduced synaptic density, reduced GRIA/AMPA receptor-mediated transmission and impaired neuronal network activity. Furthermore, we found that increased oxidative stress-mediated autophagosome accumulation leads to increased MTOR activation and decreased lysosome function, further preventing the clearing of autophagosomes. Finally, by pharmacologically reducing oxidative stress, we could rescue the aberrant autophagosome formation as well as synaptic and neuronal network activity in KANSL1-deficient neurons. Our findings thus point toward an important relation between oxidative stress-induced autophagy and synapse function, and demonstrate the importance of H4K16ac-mediated changes in chromatin structure to balance reactive oxygen species- and MTOR-dependent autophagy.Abbreviations: APO: apocynin; ATG: autophagy related; BAF: bafilomycin A1; BSO: buthionine sulfoximine; CV: coefficient of variation; DIV: days in vitro; H4K16ac: histone 4 lysine 16 acetylation; iPSC: induced-pluripotent stem cell; KANSL1: KAT8 regulatory NSL complex subunit 1; KdVS: Koolen-de Vries Syndrome; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEA: micro-electrode array; MTOR: mechanistic target of rapamycin kinase; NSL complex: nonspecific lethal complex; 8-oxo-dG: 8-hydroxydesoxyguanosine; RAP: rapamycin; ROS: reactive oxygen species; sEPSCs: spontaneous excitatory postsynaptic currents; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; SYN: synapsin; WRT: wortmannin.


Subject(s)
Autophagy , Intellectual Disability , Abnormalities, Multiple , Autophagosomes/metabolism , Autophagy/physiology , Chromosome Deletion , Chromosomes, Human, Pair 17 , Epigenesis, Genetic , Humans , Intellectual Disability/metabolism , Lysine/metabolism , Lysosomes/metabolism , Reactive Oxygen Species/metabolism , Sirolimus/pharmacology , Superoxide Dismutase-1 , TOR Serine-Threonine Kinases/metabolism
13.
Neurobiol Dis ; 163: 105587, 2022 02.
Article in English | MEDLINE | ID: mdl-34923109

ABSTRACT

Monoamine neurotransmitter abundance affects motor control, emotion, and cognitive function and is regulated by monoamine oxidases. Among these, Monoamine oxidase A (MAOA) catalyzes the degradation of dopamine, norepinephrine, and serotonin into their inactive metabolites. Loss-of-function mutations in the X-linked MAOA gene have been associated with Brunner syndrome, which is characterized by various forms of impulsivity, maladaptive externalizing behavior, and mild intellectual disability. Impaired MAOA activity in individuals with Brunner syndrome results in bioamine aberration, but it is currently unknown how this affects neuronal function, specifically in dopaminergic (DA) neurons. Here we generated human induced pluripotent stem cell (hiPSC)-derived DA neurons from three individuals with Brunner syndrome carrying different mutations and characterized neuronal properties at the single cell and neuronal network level in vitro. DA neurons of Brunner syndrome patients showed reduced synaptic density but exhibited hyperactive network activity. Intrinsic functional properties and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission were not affected in DA neurons of individuals with Brunner syndrome. Instead, we show that the neuronal network hyperactivity is mediated by upregulation of the GRIN2A and GRIN2B subunits of the N-methyl-d-aspartate receptor (NMDAR), resulting in increased NMDAR-mediated currents. By correcting a MAOA missense mutation with CRISPR/Cas9 genome editing we normalized GRIN2A and GRIN2B expression, NMDAR function and neuronal population activity to control levels. Our data suggest that MAOA mutations in Brunner syndrome increase the activity of dopaminergic neurons through upregulation of NMDAR function, which may contribute to the etiology of Brunner syndrome associated phenotypes.


Subject(s)
Disruptive, Impulse Control, and Conduct Disorders/genetics , Dopaminergic Neurons/metabolism , Genetic Diseases, X-Linked/genetics , Intellectual Disability/genetics , Monoamine Oxidase/deficiency , Monoamine Oxidase/genetics , Mutation , Polymorphism, Single Nucleotide , Receptors, N-Methyl-D-Aspartate/metabolism , Aggression , Disruptive, Impulse Control, and Conduct Disorders/metabolism , Disruptive, Impulse Control, and Conduct Disorders/physiopathology , Genetic Diseases, X-Linked/metabolism , Genetic Diseases, X-Linked/physiopathology , Humans , Induced Pluripotent Stem Cells , Intellectual Disability/metabolism , Intellectual Disability/physiopathology , Male , Monoamine Oxidase/metabolism , Nerve Net/metabolism , Nerve Net/physiopathology , Synapses/metabolism , Synaptic Transmission/genetics
14.
Stem Cell Reports ; 16(9): 2182-2196, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34329594

ABSTRACT

Micro-electrode arrays (MEAs) are increasingly used to characterize neuronal network activity of human induced pluripotent stem cell (hiPSC)-derived neurons. Despite their gain in popularity, MEA recordings from hiPSC-derived neuronal networks are not always used to their full potential in respect to experimental design, execution, and data analysis. Therefore, we benchmarked the robustness of MEA-derived neuronal activity patterns from ten healthy individual control lines, and uncover comparable network phenotypes. To achieve standardization, we provide recommendations on experimental design and analysis. With such standardization, MEAs can be used as a reliable platform to distinguish (disease-specific) network phenotypes. In conclusion, we show that MEAs are a powerful and robust tool to uncover functional neuronal network phenotypes from hiPSC-derived neuronal networks, and provide an important resource to advance the hiPSC field toward the use of MEAs for disease phenotyping and drug discovery.


Subject(s)
Cell Culture Techniques , Electrodes , Genetic Association Studies/methods , Lab-On-A-Chip Devices , Microarray Analysis/methods , Neurons/cytology , Neurons/metabolism , Action Potentials , Animals , Cell Differentiation , Cells, Cultured , Genetic Association Studies/instrumentation , Humans , Mice , Microarray Analysis/instrumentation , Nerve Net
15.
J Neural Eng ; 18(3): 036016, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33724235

ABSTRACT

OBJECTIVE: In ischemic stroke, treatments to protect neurons from irreversible damage are urgently needed. Studies in animal models have shown that neuroprotective treatments targeting neuronal silencing improve brain recovery, but in clinical trials none of these were effective in patients. This failure of translation poses doubts on the real efficacy of treatments tested and on the validity of animal models for human stroke. Here, we established a human neuronal model of the ischemic penumbra by using human induced pluripotent stem cells and we provided an in-depth characterization of neuronal responses to hypoxia and treatment strategies at the network level. APPROACH: We generated neurons from induced pluripotent stem cells derived from healthy donor and we cultured them on micro-electrode arrays. We measured the electrophysiological activity of human neuronal networks under controlled hypoxic conditions. We tested the effect of different treatment strategies on neuronal network functionality. MAIN RESULTS: Human neuronal networks are vulnerable to hypoxia reflected by a decrease in activity and synchronicity under low oxygen conditions. We observe that full, partial or absent recovery depend on the timing of re-oxygenation and we provide a critical time threshold that, if crossed, is associated with irreversible impairments. We found that hypoxic preconditioning improves resistance to a second hypoxic insult. Finally, in contrast to previously tested, ineffective treatments, we show that stimulatory treatments counteracting neuronal silencing during hypoxia, such as optogenetic stimulation, are neuroprotective. SIGNIFICANCE: We presented a human neuronal model of the ischemic penumbra and we provided insights that may offer the basis for novel therapeutic approaches for patients after stroke. The use of human neurons might improve drug discovery and translation of findings to patients and might open new perspectives for personalized investigations.


Subject(s)
Brain Ischemia , Induced Pluripotent Stem Cells , Neuroprotective Agents , Animals , Brain Ischemia/therapy , Humans , Hypoxia , Neurons
16.
Cell Rep ; 31(3): 107538, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32320658

ABSTRACT

Epilepsy, intellectual and cortical sensory deficits, and psychiatric manifestations are the most frequent manifestations of mitochondrial diseases. How mitochondrial dysfunction affects neural structure and function remains elusive, mostly because of a lack of proper in vitro neuronal model systems with mitochondrial dysfunction. Leveraging induced pluripotent stem cell technology, we differentiated excitatory cortical neurons (iNeurons) with normal (low heteroplasmy) and impaired (high heteroplasmy) mitochondrial function on an isogenic nuclear DNA background from patients with the common pathogenic m.3243A > G variant of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). iNeurons with high heteroplasmy exhibited mitochondrial dysfunction, delayed neural maturation, reduced dendritic complexity, and fewer excitatory synapses. Micro-electrode array recordings of neuronal networks displayed reduced network activity and decreased synchronous network bursting. Impaired neuronal energy metabolism and compromised structural and functional integrity of neurons and neural networks could be the primary drivers of increased susceptibility to neuropsychiatric manifestations of mitochondrial disease.


Subject(s)
Mitochondria/metabolism , Neurons/metabolism , Animals , Cell Differentiation , Humans , Rats , Rats, Wistar
17.
Cell Rep ; 30(1): 173-186.e6, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31914384

ABSTRACT

Pathogenic mutations in either one of the epigenetic modifiers EHMT1, MBD5, MLL3, or SMARCB1 have been identified to be causative for Kleefstra syndrome spectrum (KSS), a neurodevelopmental disorder with clinical features of both intellectual disability (ID) and autism spectrum disorder (ASD). To understand how these variants lead to the phenotypic convergence in KSS, we employ a loss-of-function approach to assess neuronal network development at the molecular, single-cell, and network activity level. KSS-gene-deficient neuronal networks all develop into hyperactive networks with altered network organization and excitatory-inhibitory balance. Interestingly, even though transcriptional data reveal distinct regulatory mechanisms, KSS target genes share similar functions in regulating neuronal excitability and synaptic function, several of which are associated with ID and ASD. Our results show that KSS genes mainly converge at the level of neuronal network communication, providing insights into the pathophysiology of KSS and phenotypically congruent disorders.


Subject(s)
Autistic Disorder/genetics , Autistic Disorder/pathology , Intellectual Disability/genetics , Intellectual Disability/pathology , Nerve Net/metabolism , Animals , Chromosome Deletion , Chromosomes, Human, Pair 9/genetics , Craniofacial Abnormalities/genetics , Embryonic Development/genetics , Gene Expression Regulation , Gene Knockdown Techniques , HEK293 Cells , Heart Defects, Congenital/genetics , Histocompatibility Antigens/metabolism , Histone-Lysine N-Methyltransferase/deficiency , Histone-Lysine N-Methyltransferase/metabolism , Humans , Male , Mice, Inbred C57BL , Neural Inhibition , Neurons/metabolism , Neurons/pathology , Phenotype , Rats, Wistar , Synapses/metabolism
18.
Nat Commun ; 10(1): 4928, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31666522

ABSTRACT

Kleefstra syndrome (KS) is a neurodevelopmental disorder caused by mutations in the histone methyltransferase EHMT1. To study the impact of decreased EHMT1 function in human cells, we generated excitatory cortical neurons from induced pluripotent stem (iPS) cells derived from KS patients. Neuronal networks of patient-derived cells exhibit network bursting with a reduced rate, longer duration, and increased temporal irregularity compared to control networks. We show that these changes are mediated by upregulation of NMDA receptor (NMDAR) subunit 1 correlating with reduced deposition of the repressive H3K9me2 mark, the catalytic product of EHMT1, at the GRIN1 promoter. In mice EHMT1 deficiency leads to similar neuronal network impairments with increased NMDAR function. Finally, we rescue the KS patient-derived neuronal network phenotypes by pharmacological inhibition of NMDARs. Summarized, we demonstrate a direct link between EHMT1 deficiency and NMDAR hyperfunction in human neurons, providing a potential basis for more targeted therapeutic approaches for KS.


Subject(s)
Craniofacial Abnormalities/genetics , Heart Defects, Congenital/genetics , Histone-Lysine N-Methyltransferase/genetics , Intellectual Disability/genetics , Nerve Tissue Proteins/genetics , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Animals , Cerebral Cortex/cytology , Chromosome Deletion , Chromosomes, Human, Pair 9/genetics , Chromosomes, Human, Pair 9/metabolism , Craniofacial Abnormalities/metabolism , Disease Models, Animal , Dizocilpine Maleate/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Female , Heart Defects, Congenital/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Humans , Induced Pluripotent Stem Cells , Intellectual Disability/metabolism , Loss of Function Mutation , Male , Mice , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Primary Cell Culture , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Up-Regulation
19.
J Neural Eng ; 17(1): 016001, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31658455

ABSTRACT

OBJECTIVE: In the core of a brain infarct, characterized by severely reduced blood supply, loss of neuronal function is rapidly followed by neuronal death. In peripheral areas of the infarct, the penumbra, damage is initially reversible, and neuronal activity is typically reduced due to ischemia-induced synaptic failure. There is limited understanding of factors governing neuronal recovery or the transition to irreversible damage. Neuronal activity has been shown to be crucial for survival. Consequently, hypoxia induced neuronal inactivity may contribute to cell death, and activation of penumbral neurons possibly improves survival. Adversely, activation increases ATP demand, and a balance should be found between the available energy and sufficient activity. APPROACH: We monitored activity and viability of neurons in an in vitro model of the penumbra, consisting of (rat) neuronal networks on micro electrode arrays (MEAs) under controlled hypoxic conditions. We tested effects of optogenetic and electrical activation during hypoxia. MAIN RESULTS: Mild stimulation yielded significantly better recovery of activity immediately after re-oxygenation, compared with no stimulation, and a 60%-70% higher survival rate after 5 d. Stronger stimulation was not associated with better recovery than no stimulation, suggesting that beneficial effects depend on a delicate balance between sufficient activity and available energy. SIGNIFICANCE: We show that mild activation during hypoxia/ischemia is beneficial for cell survival in an in vitro model of the penumbra. This finding opposes the current common belief that suppression of neuronal activity is the cornerstone of neuroprotection during cerebral ischemia, and may open new possibilities for the treatment of secondary brain damage after stroke.


Subject(s)
Cell Survival/physiology , Neurons/metabolism , Neurons/pathology , Animals , Animals, Newborn , Brain Ischemia/metabolism , Brain Ischemia/pathology , Cell Hypoxia/physiology , Cells, Cultured , Electric Stimulation/methods , Rats , Rats, Wistar
20.
Stud Health Technol Inform ; 261: 274-279, 2019.
Article in English | MEDLINE | ID: mdl-31156129

ABSTRACT

The main goal of this research is to design, develop and implement an efficient protocol to generate 3D neural cultures derived from human induced Pluripotent Stem Cells (hiPSCs) coupled to Micro Electrode Arrays (MEA) in order to obtain an engineered and controlled brain-on-a-chip model. The use of patient specific iPSCs may offer novel insights into the pathophysiology of a large variety of disorders, including numerous neurodevelopmental and late-onset neurodegenerative conditions. With these in vitro patient specific models, we may have the possibility to test drugs and find ad hoc therapies in the direction of precision medicine.


Subject(s)
Brain , Induced Pluripotent Stem Cells , Lab-On-A-Chip Devices , Organ Culture Techniques , Brain/physiology , Humans , Neurodegenerative Diseases , Neurodevelopmental Disorders , Organoids
SELECTION OF CITATIONS
SEARCH DETAIL
...