Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 4641, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37582830

ABSTRACT

The indigenous population of the Canary Islands, which colonized the archipelago around the 3rd century CE, provides both a window into the past of North Africa and a unique model to explore the effects of insularity. We generate genome-wide data from 40 individuals from the seven islands, dated between the 3rd-16rd centuries CE. Along with components already present in Moroccan Neolithic populations, the Canarian natives show signatures related to Bronze Age expansions in Eurasia and trans-Saharan migrations. The lack of gene flow between islands and constant or decreasing effective population sizes suggest that populations were isolated. While some island populations maintained relatively high genetic diversity, with the only detected bottleneck coinciding with the colonization time, other islands with fewer natural resources show the effects of insularity and isolation. Finally, consistent genetic differentiation between eastern and western islands points to a more complex colonization process than previously thought.


Subject(s)
Genetic Drift , Genomics , Humans , Spain , Africa, Northern , Indigenous Peoples , Islands , Genetic Variation , Genetics, Population
2.
Science ; 380(6645): eadd6142, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37167382

ABSTRACT

Aridoamerica and Mesoamerica are two distinct cultural areas in northern and central Mexico, respectively, that hosted numerous pre-Hispanic civilizations between 2500 BCE and 1521 CE. The division between these regions shifted southward because of severe droughts ~1100 years ago, which allegedly drove a population replacement in central Mexico by Aridoamerican peoples. In this study, we present shotgun genome-wide data from 12 individuals and 27 mitochondrial genomes from eight pre-Hispanic archaeological sites across Mexico, including two at the shifting border of Aridoamerica and Mesoamerica. We find population continuity that spans the climate change episode and a broad preservation of the genetic structure across present-day Mexico for the past 2300 years. Lastly, we identify a contribution to pre-Hispanic populations of northern and central Mexico from two ancient unsampled "ghost" populations.


Subject(s)
Genetic Structures , Hispanic or Latino , Humans , History, Ancient , Mexico , Population Dynamics
3.
Cell Genom ; 2(6): 100143, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-36778139

ABSTRACT

In the sixth century, the Avar elites established themselves in the Carpathian Basin as evidenced today by the astounding archaeological sites with exquisite grave goods made of silver and gold. Recently reported in Cell, Gnecchi-Ruscone et al.1 obtained paleogenomic evidence from Avar sites in Hungary, placing the Avar elites' origin in Mongolia and confirming their own historical claims.

4.
Ann Hum Biol ; 48(3): 179-190, 2021 May.
Article in English | MEDLINE | ID: mdl-34459342

ABSTRACT

A substantial portion of ancient DNA research has been centred on understanding European populations' origin and evolution. A rchaeological evidence has already shown that the peopling of Europe involved an intricate pattern of demic and/or cultural diffusion since the Upper Palaeolithic, which became more evident during the Neolithic and Bronze Age periods. However, ancient DNA data has been crucial in determining if cultural changes occurred due to the movement of ideas or people. With the advent of next-generation sequencing and population-based paleogenomic research, ancient DNA studies have been directed not only at the study of continental human migrations, but also to the detailed analysis of particular archaeological sites, the processes of domestication, or the spread of disease during prehistoric times. With this vast paleogenomic effort added to a proper archaeological contextualisation of results, a deeper understanding of Europe's peopling is starting to emanate.


Subject(s)
Communicable Diseases/epidemiology , DNA, Ancient/analysis , Domestication , Genome, Human , Human Migration , Archaeology , Communicable Diseases/microbiology , Communicable Diseases/parasitology , Communicable Diseases/virology , Europe , Genomics , Humans
5.
Hum Mol Genet ; 30(R1): R64-R71, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33295602

ABSTRACT

The establishment of European colonies across the world had important demographic consequences because it brought together diverse and distant civilizations for the first time. One clear example of this phenomenon is observed in the Canary Islands. The modern Canarian population is mainly the result of the admixture of natives of North African origin and European colonizers. However, additional migratory flows reached the islands due to the importation of enslaved Africans to cultivate sugarcane and the intense commercial contact with the American continent. In this review, we evaluate how the genetic analysis of indigenous, historical and current populations has provided a glimpse into the Canary Islands' complex genetic composition. We show that each island subpopulation's characterization is needed to fully disentangle the demographic history of the Canarian archipelago. Finally, we discuss what research avenues remain to be explored to improve our knowledge of the impact that the European colonization had on its native population.


Subject(s)
Black People/genetics , Gene Flow , White People/genetics , Africa, Northern , Black People/ethnology , Enslaved Persons , Europe , Human Migration , Humans , Spain/ethnology , White People/ethnology
6.
Mol Biol Evol ; 37(3): 773-785, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31697387

ABSTRACT

The protozoan Plasmodium vivax is responsible for 42% of all cases of malaria outside Africa. The parasite is currently largely restricted to tropical and subtropical latitudes in Asia, Oceania, and the Americas. Though, it was historically present in most of Europe before being finally eradicated during the second half of the 20th century. The lack of genomic information on the extinct European lineage has prevented a clear understanding of historical population structuring and past migrations of P. vivax. We used medical microscope slides prepared in 1944 from malaria-affected patients from the Ebro Delta in Spain, one of the last footholds of malaria in Europe, to generate a genome of a European P. vivax strain. Population genetics and phylogenetic analyses placed this strain basal to a cluster including samples from the Americas. This genome allowed us to calibrate a genomic mutation rate for P. vivax, and to estimate the mean age of the last common ancestor between European and American strains to the 15th century. This date points to an introduction of the parasite during the European colonization of the Americas. In addition, we found that some known variants for resistance to antimalarial drugs, including Chloroquine and Sulfadoxine, were already present in this European strain, predating their use. Our results shed light on the evolution of an important human pathogen and illustrate the value of antique medical collections as a resource for retrieving genomic information on pathogens from the past.


Subject(s)
Malaria, Vivax/parasitology , Plasmodium vivax/classification , Plasmodium vivax/genetics , Whole Genome Sequencing/methods , Americas , Asia , Evolution, Molecular , Genetics, Population , Genome, Protozoan , High-Throughput Nucleotide Sequencing , Humans , Oceania , Phylogeny , Phylogeography , Spain
7.
Microb Genom ; 5(9)2019 09.
Article in English | MEDLINE | ID: mdl-31454309

ABSTRACT

Malaria was present in most of Europe until the second half of the 20th century, when it was eradicated through a combination of increased surveillance and mosquito control strategies, together with cross-border and political collaboration. Despite the severe burden of malaria on human populations, it remains contentious how the disease arrived and spread in Europe. Here, we report a partial Plasmodium falciparum nuclear genome derived from a set of antique medical slides stained with the blood of malaria-infected patients from Spain's Ebro Delta, dating to the 1940s. Our analyses of the genome of this now eradicated European P. falciparum strain confirms stronger phylogeographical affinity to present-day strains in circulation in central south Asia, rather than to those in Africa. This points to a longitudinal, rather than a latitudinal, spread of malaria into Europe. In addition, this genome displays two derived alleles in the pfmrp1 gene that have been associated with drug resistance. Whilst this could represent standing variation in the ancestral P. falciparum population, these mutations may also have arisen due to the selective pressure of quinine treatment, which was an anti-malarial drug already in use by the time the sample we sequenced was mounted on a slide.


Subject(s)
Genome, Protozoan , Plasmodium falciparum/genetics , Antimalarials/pharmacology , Asia, Central , DNA-Binding Proteins/genetics , Drug Resistance/drug effects , Drug Resistance/genetics , Europe , Genetics, Population , Humans , Malaria/parasitology , Malaria/pathology , Phylogeography , Plasmodium falciparum/drug effects , Plasmodium falciparum/isolation & purification , Protozoan Proteins/genetics , Transcription Factors/genetics
8.
PLoS One ; 14(3): e0209125, 2019.
Article in English | MEDLINE | ID: mdl-30893316

ABSTRACT

The Canary Islands' indigenous people have been the subject of substantial archaeological, anthropological, linguistic and genetic research pointing to a most probable North African Berber source. However, neither agreement about the exact point of origin nor a model for the indigenous colonization of the islands has been established. To shed light on these questions, we analyzed 48 ancient mitogenomes from 25 archaeological sites from the seven main islands. Most lineages observed in the ancient samples have a Mediterranean distribution, and belong to lineages associated with the Neolithic expansion in the Near East and Europe (T2c, J2a, X3a…). This phylogeographic analysis of Canarian ancient mitogenomes, the first of its kind, shows that some lineages are restricted to Central North Africa (H1cf, J2a2d and T2c1d3), while others have a wider distribution, including both West and Central North Africa, and, in some cases, Europe and the Near East (U6a1a1, U6a7a1, U6b, X3a, U6c1). In addition, we identify four new Canarian-specific lineages (H1e1a9, H4a1e, J2a2d1a and L3b1a12) whose coalescence dates correlate with the estimated time for the colonization of the islands (1st millennia CE). Additionally, we observe an asymmetrical distribution of mtDNA haplogroups in the ancient population, with certain haplogroups appearing more frequently in the islands closer to the continent. This reinforces results based on modern mtDNA and Y-chromosome data, and archaeological evidence suggesting the existence of two distinct migrations. Comparisons between insular populations show that some populations had high genetic diversity, while others were probably affected by genetic drift and/or bottlenecks. In spite of observing interinsular differences in the survival of indigenous lineages, modern populations, with the sole exception of La Gomera, are homogenous across the islands, supporting the theory of extensive human mobility after the European conquest.


Subject(s)
Ethnicity/genetics , High-Throughput Nucleotide Sequencing/methods , Mitochondria/genetics , Transients and Migrants/classification , Africa, Northern/ethnology , Europe/ethnology , Genetic Drift , Genetics, Population , Genome, Mitochondrial , Humans , Middle East , Phylogeography , Sequence Analysis, DNA , Spain/ethnology
9.
Am J Phys Anthropol ; 169(1): 31-54, 2019 05.
Article in English | MEDLINE | ID: mdl-30802307

ABSTRACT

OBJECTIVE: We analyze the processing sequence involved in the manufacture of a skull-cup and the manipulation of human bones from the Early Neolithic of Cueva de El Toro (Málaga, Spain). MATERIALS AND METHODS: The Early Neolithic material studied includes human remains found in two separate assemblages. Assemblage A consists of one skull-cup, a non-manipulated adult human mandible, and four ceramic vessels. Assemblage B contains manipulated and non-manipulated human remains that appeared mingled with domestic waste. Using a taphonomic approach, we evaluate the skull-cup processing and the anthropogenic alteration of human bones. RESULTS: The skull-cup was processed by careful paring away of skin, fragmentation of the facial skeleton and base of the skull, and controlled percussion of the edges of the calotte to achieve a regular shape. It was later boiled for some time in a container that caused pot polish in a specific area. The other human bones appeared scattered throughout the living area, mixed with other remains of domestic activity. Some of these bones show cut marks, percussion damage for marrow extraction, and tooth/chewing marks. DISCUSSION: Evidence from Cueva de El Toro suggests that cannibalism was conducted in the domestic sphere, likely following ritualized practices where the skull-cup could have played a part. Interpretation of this evidence suggests two hypotheses: (a) aggressive cannibalism relates to extreme inter-group violence; and (b) funerary cannibalism is a facet of multi-stage burial practices. Similar evidence has been found in other Neolithic sites of this region and suggests that cannibalism and skull-cups were elements widespread in these communities. These practices may be linked to significant transformations associated with the end of the Early Neolithic in southern Iberia.


Subject(s)
Cannibalism/history , Funeral Rites/history , Skull/pathology , Violence/history , Adolescent , Adult , Aggression , Archaeology , Child , Child, Preschool , Female , History, Ancient , Humans , Infant , Male , Spain , Young Adult
10.
Proc Natl Acad Sci U S A ; 115(26): 6774-6779, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29895688

ABSTRACT

The extent to which prehistoric migrations of farmers influenced the genetic pool of western North Africans remains unclear. Archaeological evidence suggests that the Neolithization process may have happened through the adoption of innovations by local Epipaleolithic communities or by demic diffusion from the Eastern Mediterranean shores or Iberia. Here, we present an analysis of individuals' genome sequences from Early and Late Neolithic sites in Morocco and from Early Neolithic individuals from southern Iberia. We show that Early Neolithic Moroccans (∼5,000 BCE) are similar to Later Stone Age individuals from the same region and possess an endemic element retained in present-day Maghrebi populations, confirming a long-term genetic continuity in the region. This scenario is consistent with Early Neolithic traditions in North Africa deriving from Epipaleolithic communities that adopted certain agricultural techniques from neighboring populations. Among Eurasian ancient populations, Early Neolithic Moroccans are distantly related to Levantine Natufian hunter-gatherers (∼9,000 BCE) and Pre-Pottery Neolithic farmers (∼6,500 BCE). Late Neolithic (∼3,000 BCE) Moroccans, in contrast, share an Iberian component, supporting theories of trans-Gibraltar gene flow and indicating that Neolithization of North Africa involved both the movement of ideas and people. Lastly, the southern Iberian Early Neolithic samples share the same genetic composition as the Cardial Mediterranean Neolithic culture that reached Iberia ∼5,500 BCE. The cultural and genetic similarities between Iberian and North African Neolithic traditions further reinforce the model of an Iberian migration into the Maghreb.


Subject(s)
Ethnicity/genetics , Genome, Human , Human Migration/history , Africa, Northern , Agriculture/history , Chromosomes, Human, Y/genetics , DNA, Mitochondrial/genetics , Ethnicity/history , Europe , Gene Flow , Gene Library , Genetics, Population , History, Ancient , Humans , Middle East , Morocco , Sequence Analysis, DNA , Spain/ethnology
11.
Proc Natl Acad Sci U S A ; 113(41): 11495-11500, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27671660

ABSTRACT

Phylogenetic analysis of Plasmodium parasites has indicated that their modern-day distribution is a result of a series of human-mediated dispersals involving transport between Africa, Europe, America, and Asia. A major outstanding question is the phylogenetic affinity of the malaria causing parasites Plasmodium vivax and falciparum in historic southern Europe-where it was endemic until the mid-20th century, after which it was eradicated across the region. Resolving the identity of these parasites will be critical for answering several hypotheses on the malaria dispersal. Recently, a set of slides with blood stains of malaria-affected people from the Ebro Delta (Spain), dated between 1942 and 1944, have been found in a local medical collection. We extracted DNA from three slides, two of them stained with Giemsa (on which Plasmodium parasites could still be seen under the microscope) and another one consisting of dried blood spots. We generated the data using Illumina sequencing after using several strategies aimed at increasing the Plasmodium DNA yield: depletion of the human genomic (g)DNA content through hybridization with human gDNA baits, and capture-enrichment using gDNA derived from P. falciparum Plasmodium mitochondrial genome sequences were subsequently reconstructed from the resulting data. Phylogenetic analysis of the eradicated European P. vivax mtDNA genome indicates that the European isolate is closely related to the most common present-day American haplotype and likely entered the American continent post-Columbian contact. Furthermore, the European P. falciparum mtDNA indicates a link with current Indian strains that is in agreement with historical accounts.


Subject(s)
DNA, Mitochondrial/genetics , Disease Eradication , Plasmodium falciparum/genetics , Plasmodium vivax/genetics , DNA, Protozoan/genetics , Haplotypes/genetics , Likelihood Functions , Phylogeny , Sequence Analysis, DNA , Spain
12.
Am J Phys Anthropol ; 159(2): 300-12, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26458007

ABSTRACT

OBJECTIVES: The Canary Islands are considered one of the first places where Atlantic slave plantations with labourers of African origin were established, during the 15th century AD. In Gran Canaria (Canary Islands, Spain), a unique cemetery dated to the 15th and 17th centuries was discovered adjacent to an ancient sugar plantation with funerary practices that could be related to enslaved people. In this article, we investigate the origin and possible birthplace of each individual buried in this cemetery, as well as the identity and social status of these people. MATERIALS AND METHODS: The sample consists of 14 individuals radiocarbon dated to the 15th and 17th centuries AD. We have employed several methods, including the analysis of ancient human DNA, stable isotopes, and skeletal markers of physical activity. RESULTS: 1) the funerary practices indicate a set of rituals not previously recorded in the Canary Islands; 2) genetic data show that some people buried in the cemetery could have North-African and sub-Saharan African lineages; 3) isotopic results suggest that some individuals were born outside Gran Canaria; and 4) markers of physical activity show a pattern of labour involving high levels of effort. DISCUSSION: This set of evidence, along with information from historical sources, suggests that Finca Clavijo was a cemetery for a multiethnic marginalized population that had being likely enslaved. Results also indicate that this population kept practicing non-Christian rituals well into the 17th century. We propose that this was possible because the location of the Canaries, far from mainland Spain and the control of the Spanish Crown, allowed the emergence of a new society with multicultural origins that was more tolerant to foreign rituals and syncretism.


Subject(s)
DNA/genetics , Enslavement/history , Adolescent , Adult , Africa , Anthropology, Physical , Carbon Isotopes/analysis , Cemeteries/history , Child , Female , History, 15th Century , History, 16th Century , History, 17th Century , Humans , Male , Middle Aged , Oxygen Isotopes/analysis , Radiometric Dating , Spain , Tooth/chemistry , Young Adult
13.
PLoS One ; 10(6): e0129839, 2015.
Article in English | MEDLINE | ID: mdl-26053380

ABSTRACT

BACKGROUND: The modern human colonization of Eurasia and Australia is mostly explained by a single-out-of-Africa exit following a southern coastal route throughout Arabia and India. However, dispersal across the Levant would better explain the introgression with Neanderthals, and more than one exit would fit better with the different ancient genomic components discovered in indigenous Australians and in ancient Europeans. The existence of an additional Northern route used by modern humans to reach Australia was previously deduced from the phylogeography of mtDNA macrohaplogroup N. Here, we present new mtDNA data and new multidisciplinary information that add more support to this northern route. METHODS: MtDNA hypervariable segments and haplogroup diagnostic coding positions were analyzed in 2,278 Saudi Arabs, from which 1,725 are new samples. Besides, we used 623 published mtDNA genomes belonging to macrohaplogroup N, but not R, to build updated phylogenetic trees to calculate their coalescence ages, and more than 70,000 partial mtDNA sequences were screened to establish their respective geographic ranges. RESULTS: The Saudi mtDNA profile confirms the absence of autochthonous mtDNA lineages in Arabia with coalescence ages deep enough to support population continuity in the region since the out-of-Africa episode. In contrast to Australia, where N(xR) haplogroups are found in high frequency and with deep coalescence ages, there are not autochthonous N(xR) lineages in India nor N(xR) branches with coalescence ages as deep as those found in Australia. These patterns are at odds with the supposition that Australian colonizers harboring N(xR) lineages used a route involving India as a stage. The most ancient N(xR) lineages in Eurasia are found in China, and inconsistently with the coastal route, N(xR) haplogroups with the southernmost geographical range have all more recent radiations than the Australians. CONCLUSIONS: Apart from a single migration event via a southern route, phylogeny and phylogeography of N(xR) lineages support that people carrying mtDNA N lineages could have reach Australia following a northern route through Asia. Data from other disciplines also support this scenario.


Subject(s)
DNA, Mitochondrial/genetics , Ethnicity/genetics , Genetics, Population , Heterozygote , Asia , Australia , Evolution, Molecular , Haplotypes , Human Migration , Humans , Phylogeny , Sequence Analysis, DNA
14.
Mitochondrion ; 22: 75-84, 2015 May.
Article in English | MEDLINE | ID: mdl-25869968

ABSTRACT

Canis lupus familiaris mitochondrial DNA analysis has increased in recent years, not only for the purpose of deciphering dog domestication but also for forensic genetic studies or breed characterization. The resultant accumulation of data has increased the need for a normalized and phylogenetic-based nomenclature like those provided for human maternal lineages. Although a standardized classification has been proposed, haplotype names within clades have been assigned gradually without considering the evolutionary history of dog mtDNA. Moreover, this classification is based only on the D-loop region, proven to be insufficient for phylogenetic purposes due to its high number of recurrent mutations and the lack of relevant information present in the coding region. In this study, we design 1) a refined mtDNA cladistic nomenclature from a phylogenetic tree based on complete sequences, classifying dog maternal lineages into haplogroups defined by specific diagnostic mutations, and 2) a coding region SNP analysis that allows a more accurate classification into haplogroups when combined with D-loop sequencing, thus improving the phylogenetic information obtained in dog mitochondrial DNA studies.


Subject(s)
DNA, Mitochondrial/genetics , Dogs/classification , Dogs/genetics , Haplotypes , Phylogeny , Animals , Terminology as Topic
15.
Eur J Hum Genet ; 23(9): 1236-43, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25407001

ABSTRACT

The present-day population structure of La Gomera is outstanding in its high aboriginal heritage, the greatest in the Canary Islands. This was earlier confirmed by both mitochondrial DNA and autosomal analyses, although genetic drift due to the fifteenth century European colonization could not be excluded as the main factor responsible. The present mtDNA study of aboriginal remains and extant samples from the six municipal districts of the island indeed demonstrates that the pre-Hispanic colonization of La Gomera by North African people involved a strong founder event, shown by the high frequency of the indigenous Canarian U6b1a lineage in the aboriginal samples (65%). This value is even greater than that observed in the extant population (44%), which in turn is the highest of all the seven Canary Islands. In contrast to previous results obtained for the aboriginal populations of Tenerife and La Palma, haplogroups related to secondary waves of migration were not detected in La Gomera aborigines, indicating that isolation also had an important role in shaping the current population. The rugged relief of La Gomera divided into several distinct valleys probably promoted subsequent aboriginal intra-insular differentiation that has continued after the European colonization, as seen in the present-day population structure observed on the island.


Subject(s)
DNA, Mitochondrial/genetics , Ethnicity , Genetics, Population , Reproductive Isolation , Genetic Drift , Genetic Variation , Human Migration , Humans , Inheritance Patterns , Phylogeny , Spain
16.
BMC Evol Biol ; 14: 109, 2014 May 19.
Article in English | MEDLINE | ID: mdl-24885141

ABSTRACT

BACKGROUND: Complete mitochondrial DNA (mtDNA) genome analyses have greatly improved the phylogeny and phylogeography of human mtDNA. Human mitochondrial DNA haplogroup U6 has been considered as a molecular signal of a Paleolithic return to North Africa of modern humans from southwestern Asia. RESULTS: Using 230 complete sequences we have refined the U6 phylogeny, and improved the phylogeographic information by the analysis of 761 partial sequences. This approach provides chronological limits for its arrival to Africa, followed by its spreads there according to climatic fluctuations, and its secondary prehistoric and historic migrations out of Africa colonizing Europe, the Canary Islands and the American Continent. CONCLUSIONS: The U6 expansions and contractions inside Africa faithfully reflect the climatic fluctuations that occurred in this Continent affecting also the Canary Islands. Mediterranean contacts drove these lineages to Europe, at least since the Neolithic. In turn, the European colonization brought different U6 lineages throughout the American Continent leaving the specific sign of the colonizers origin.


Subject(s)
DNA, Mitochondrial/genetics , Gene Flow , Human Migration , Phylogeography , Sequence Analysis, DNA , Africa , Asia , Europe , Genetics, Population , Haplotypes , Humans , Molecular Sequence Data , Phylogeny
17.
PLoS One ; 9(3): e93294, 2014.
Article in English | MEDLINE | ID: mdl-24676463

ABSTRACT

This article reports on the first genetic assessment of the contemporary Mauritian population. Small island nodes such as Mauritius played a critical role in historic globalization processes and revealing high-resolution details of labour sourcing is crucial in order to better understand early-modern diaspora events. Mauritius is a particularly interesting case given detailed historic accounts attesting to European (Dutch, French and British), African and Asian points of origin. Ninety-seven samples were analysed for mitochondrial DNA to begin unravelling the complex dynamics of the island's modern population. In corroboration with general demographic information, the majority of maternal lineages were derived from South Asia (58.76%), with Malagasy (16.60%), East/Southeast Asian (11.34%) and Sub-Saharan African (10.21%) also making significant contributions. This study pinpoints specific regional origins for the South Asian genetic contribution, showing a greater influence on the contemporary population from northern and southeast India. Moreover, the analysis of lineages related to the slave trade demonstrated that Madagascar and East Asia were the main centres of origin, with less influence from West Africa.


Subject(s)
Asian People/genetics , Black People/genetics , DNA, Mitochondrial/genetics , Genetics, Population , Phylogeography , White People/genetics , Asian People/history , Black People/history , DNA, Mitochondrial/classification , Female , Gene Flow , Haplotypes , History, 17th Century , History, 18th Century , History, 19th Century , Humans , Male , Mauritius , White People/history
18.
Am J Hum Biol ; 26(2): 130-41, 2014.
Article in English | MEDLINE | ID: mdl-24375863

ABSTRACT

OBJECTIVES: The aim of this study is to analyze mitochondrial DNA and Y-chromosome lineages in a range of Atlantic and Mediterranean populations of the Iberian Peninsula in search of genetic differences between both façades and to uncover the most probable geographic origin and coalescence ages of lineages. METHODS: The control region of mitochondrial DNA and haplogroup diagnostic positions were analyzed in 575 subjects and Y-chromosome markers were typed in 260 unrelated males. Moreover, previously published data were compiled and used in the analyses. RESULTS: The level of genetic structure deduced from uniparental markers for the Iberian Peninsula was weak, with stronger Atlantic versus Mediterranean than North to South differentiation and larger diversities in the South. In general, mitochondrial DNA haplogroups had mainly Paleolithic and Mesolithic coalescences in Europe, although some of them, ruling out drift effects, seem to have younger implantation in Central Europe and the Atlantic areas than in the Mediterranean (I, J, J2a, T1, and W) while others as N1 and X could have reached the Iberian Peninsula at the Neolithic transition. On the other hand, younger coalescence ages are being proposed for the arriving or spread of the bulk of Y-chromosome lineages in Europe. CONCLUSIONS: The major haplotypic affinities found for all the Iberian Peninsula regions were always with North Africa and the Atlantic Islands. These results draw an Atlantic network that clearly resembles those of the Megalithic Copper and Bronze cultures at this part of Europe.


Subject(s)
Chromosomes, Human, Y/genetics , DNA, Mitochondrial/genetics , Haplotypes , Polymorphism, Restriction Fragment Length , Female , Humans , Male , Polymerase Chain Reaction , Portugal , Sequence Analysis, DNA , Spain
19.
PLoS One ; 8(2): e56775, 2013.
Article in English | MEDLINE | ID: mdl-23431392

ABSTRACT

North Africa is considered a distinct geographic and ethnic entity within Africa. Although modern humans originated in this Continent, studies of mitochondrial DNA (mtDNA) and Y-chromosome genealogical markers provide evidence that the North African gene pool has been shaped by the back-migration of several Eurasian lineages in Paleolithic and Neolithic times. More recent influences from sub-Saharan Africa and Mediterranean Europe are also evident. The presence of East-West and North-South haplogroup frequency gradients strongly reinforces the genetic complexity of this region. However, this genetic scenario is beset with a notable gap, which is the lack of consistent information for Algeria, the largest country in the Maghreb. To fill this gap, we analyzed a sample of 240 unrelated subjects from a northwest Algeria cosmopolitan population using mtDNA sequences and Y-chromosome biallelic polymorphisms, focusing on the fine dissection of haplogroups E and R, which are the most prevalent in North Africa and Europe respectively. The Eurasian component in Algeria reached 80% for mtDNA and 90% for Y-chromosome. However, within them, the North African genetic component for mtDNA (U6 and M1; 20%) is significantly smaller than the paternal (E-M81 and E-V65; 70%). The unexpected presence of the European-derived Y-chromosome lineages R-M412, R-S116, R-U152 and R-M529 in Algeria and the rest of the Maghreb could be the counterparts of the mtDNA H1, H3 and V subgroups, pointing to direct maritime contacts between the European and North African sides of the western Mediterranean. Female influx of sub-Saharan Africans into Algeria (20%) is also significantly greater than the male (10%). In spite of these sexual asymmetries, the Algerian uniparental profiles faithfully correlate between each other and with the geography.


Subject(s)
Chromosomes, Human, Y/genetics , DNA, Mitochondrial/genetics , Algeria , Female , Gene Frequency , Genetic Variation , Genetics, Population , Haplotypes , Human Migration , Humans , Male , Phylogeny , Phylogeography , Sequence Analysis, DNA
20.
PLoS One ; 7(5): e37022, 2012.
Article in English | MEDLINE | ID: mdl-22615879

ABSTRACT

BACKGROUND: Caspase-12 (CASP12) modulates the susceptibility to sepsis. In humans, the "C" allele at CASP12 rs497116 has been associated with an increased risk of sepsis. Instead, the derived "T" allele encodes for an inactive caspase-12. Interestingly, Eurasians are practically fixed for the inactive variant, whereas in Sub-Saharan Africa the active variant is still common (~24%). This marked structure has been explained as a function of the selective advantage that the inactive caspase-12 confers by increasing resistance to infection. As regards to both when positive selection started acting and as to the speed with which fixation was achieved in Eurasia, estimates depend on the method and assumptions used, and can vary substantially. Using experimental evidence, we propose that, least in Eurasia, the increase in the frequency of the T allele might be related to the selective pressure exerted by the increase in zoonotic diseases transmission caused by the interplay between increased human population densities and a closer contact with animals during the Neolithic. METHODOLOG/PRINCIPAL FINDINGS: We genotyped CASP12 rs497116 in prehistoric individuals from 6 archaeological sites from the North of the Iberian Peninsula that date from Late Upper Paleolithic to Late Neolithic. DNA extraction was done from teeth lacking cavities or breakages using standard anti-contamination procedures, including processing of the samples in a positive pressure, ancient DNA-only chamber, quantitation of DNAs by qPCR, duplication, replication, genotyping of associated animals, or cloning of PCR products. Out of 50, 24 prehistoric individuals could finally be genotyped for rs497116. Only the inactive form of CASP12 was found. CONCLUSIONS/SIGNIFICANCE: We demonstrate that the loss of caspase-12 in Europe predates animal domestication and that consequently CASP12 loss is unlikely to be related to the impact of zoonotic infections transmitted by livestock.


Subject(s)
Caspase 12/physiology , Alleles , Caspase 12/genetics , Europe , Genetics, Population , Genotype , History, Ancient , Humans , Sepsis/enzymology , Sepsis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...