Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Hemasphere ; 7(8): e931, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37492437

ABSTRACT

Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by an intense trafficking of the leukemic cells between the peripheral blood and lymphoid tissues. It is known that the ability of lymphocytes to recirculate strongly depends on their capability to rapidly rearrange their cytoskeleton and adapt to external cues; however, little is known about the differences occurring between CLL and healthy B cells during these processes. To investigate this point, we applied a single-cell optical (super resolution microscopy) and nanomechanical approaches (atomic force microscopy, real-time deformability cytometry) to both CLL and healthy B lymphocytes and compared their behavior. We demonstrated that CLL cells have a specific actomyosin complex organization and altered mechanical properties in comparison to their healthy counterpart. To evaluate the clinical relevance of our findings, we treated the cells in vitro with the Bruton's tyrosine kinase inhibitors and we found for the first time that the drug restores the CLL cells mechanical properties to a healthy phenotype and activates the actomyosin complex. We further validated these results in vivo on CLL cells isolated from patients undergoing ibrutinib treatment. Our results suggest that CLL cells' mechanical properties are linked to their actin cytoskeleton organization and might be involved in novel mechanisms of drug resistance, thus becoming a new potential therapeutic target aiming at the normalization of the mechanical fingerprints of the leukemic cells.

2.
Biomicrofluidics ; 16(6): 064101, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36406339

ABSTRACT

Mechanical properties have been proven to be a pivotal parameter to enhance our understanding of living systems. While research during the last decades focused on cells and tissues, little is known about the role of organelle mechanics in cell function. Here, mitochondria are of specific interest due to their involvement in numerous physiological and pathological processes, e.g., in the production and homeostasis of reactive oxygen species (ROS). Using real-time fluorescence and deformability cytometry, we present a microfluidic technology that is capable to determine the mechanical properties of individual mitochondria at a throughput exceeding 100 organelles per second. Our data on several thousands of viable mitochondria isolated from rat C6 glial cells yield a homogenous population with a median deformation that scales with the applied hydrodynamic stress. In two proof-of-principle studies, we investigated the impact of exogenously and endogenously produced ROS on mitochondria mechanics. Exposing C6 cells to hydrogen peroxide (H2O2) triggers superoxide production and leads to a reduction in mitochondria size while deformation is increased. In a second study, we focused on the knockout of tafazzin, which has been associated with impaired remodeling of the mitochondrial membrane and elevated levels of ROS. Interestingly, our results reveal the same mechanical alterations as observed after the exposure to H2O2, which points to a unified biophysical mechanism of how mitochondria respond to the presence of oxidative stress. In summary, we introduce high-throughput mechanical phenotyping into the field of organelle biology with potential applications for understanding sub-cellular dynamics that have not been accessible before.

3.
Biomicrofluidics ; 16(2): 024109, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35541026

ABSTRACT

The capability to parameterize shapes is of essential importance in biomechanics to identify cells, to track their motion, and to quantify deformation. While various shape descriptors have already been investigated to study the morphology and migration of adherent cells, little is known of how the mathematical definition of a contour impacts the outcome of rheological experiments on cells in suspension. In microfluidic systems, hydrodynamic stress distributions induce time-dependent cell deformation that needs to be quantified to determine viscoelastic properties. Here, we compared nine different shape descriptors to characterize the deformation of suspended cells in an extensional as well as shear flow using dynamic real-time deformability cytometry. While stress relaxation depends on the amplitude and duration of stress, our results demonstrate that steady-state deformation can be predicted from single cell traces even for translocation times shorter than their characteristic time. Implementing an analytical simulation, performing experiments, and testing various data analysis strategies, we compared single cell and ensemble studies to address the question of computational costs vs experimental accuracy. Results indicate that high-throughput viscoelastic measurements of cells in suspension can be performed on an ensemble scale as long as the characteristic time matches the dimensions of the microfluidic system. Finally, we introduced a score to evaluate the shape descriptor-dependent effect size for cell deformation after cytoskeletal modifications. We provide evidence that single cell analysis in an extensional flow provides the highest sensitivity independent of shape parametrization, while inverse Haralick's circularity is mostly applicable to study cells in shear flow.

4.
Nat Commun ; 11(1): 2190, 2020 05 04.
Article in English | MEDLINE | ID: mdl-32366850

ABSTRACT

Microfluidics by soft lithography has proven to be of key importance for biophysics and life science research. While being based on replicating structures of a master mold using benchtop devices, design modifications are time consuming and require sophisticated cleanroom equipment. Here, we introduce virtual fluidic channels as a flexible and robust alternative to microfluidic devices made by soft lithography. Virtual channels are liquid-bound fluidic systems that can be created in glass cuvettes and tailored in three dimensions within seconds for rheological studies on a wide size range of biological samples. We demonstrate that the liquid-liquid interface imposes a hydrodynamic stress on confined samples, and the resulting strain can be used to calculate rheological parameters from simple linear models. In proof-of-principle experiments, we perform high-throughput rheology inside a flow cytometer cuvette and show the Young's modulus of isolated cells exceeds the one of the corresponding tissue by one order of magnitude.


Subject(s)
Dimethylpolysiloxanes/chemistry , Elastic Modulus/physiology , Microfluidic Analytical Techniques/methods , Microfluidics/methods , Polyethylene Glycols/chemistry , Algorithms , Equipment Design , Flow Cytometry , HEK293 Cells , HL-60 Cells , Humans , Hydrodynamics , Microfluidic Analytical Techniques/instrumentation , Microfluidics/instrumentation , Models, Theoretical , Rheology , Spheroids, Cellular
5.
Lab Chip ; 20(13): 2306-2316, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32458864

ABSTRACT

Without cellular blood products such as platelet concentrates (PC), red blood cell concentrates (RCC), and hematopoietic stem cells (HPSC) modern treatments in medicine would not be possible. An unresolved challenge is the assessment of their quality with minimal cell manipulation. Minor changes in production, storage conditions, or blood bag composition may impact cell function, which can have important consequences on product integrity. This is especially relevant for personalized medicine, such as autologous T-cell therapy. Today a robust methodology that globally determines cell status directly before transfusion or transplantation is lacking. We demonstrate that measuring viscoelastic characteristics of peripheral blood cells using real-time deformability cytometry (RT-DC) provides comprehensive information on product quality, which is not accessible using conventional quality control tests. In addition, RT-DC requires few cells, a minimal sample volume and has a rapid turnaround time. We compared RT-DC to standard in vitro quality assays assessing: i) PC after storage at 4 °C and room temperature; ii) magnetic nanoparticle labeled platelets; iii) RCC stored in blood bags with different plasticizers; iv) RCC after gamma irradiation; and v) HPSC after cryopreservation with 5% or 10% dimethyl sulfoxide, respectively. Additionally, we evaluated the engraftment time of patients' platelets and leukocytes after transplantation of HPSC products. Our results demonstrate that label-free mechano-phenotyping can be used as a potential biomarker for quality assessment of cell-based pharmaceutical products.


Subject(s)
Blood Component Removal , Pharmaceutical Preparations , Blood Platelets , Blood Preservation , Cryopreservation , Humans , Leukocytes
6.
Nat Commun ; 10(1): 415, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679420

ABSTRACT

In life sciences, the material properties of suspended cells have attained significance close to that of fluorescent markers but with the advantage of label-free and unbiased sample characterization. Until recently, cell rheological measurements were either limited by acquisition throughput, excessive post processing, or low-throughput real-time analysis. Real-time deformability cytometry expanded the application of mechanical cell assays to fast on-the-fly phenotyping of large sample sizes, but has been restricted to single material parameters as the Young's modulus. Here, we introduce dynamic real-time deformability cytometry for comprehensive cell rheological measurements at up to 100 cells per second. Utilizing Fourier decomposition, our microfluidic method is able to disentangle cell response to complex hydrodynamic stress distributions and to determine viscoelastic parameters independent of cell shape. We demonstrate the application of our technology for peripheral blood cells in whole blood samples including the discrimination of B- and CD4+ T-lymphocytes by cell rheological properties.


Subject(s)
Cell Shape , Flow Cytometry/methods , Microfluidics/methods , Rheology/methods , Single-Cell Analysis/methods , Blood Cells/cytology , Cell Shape/drug effects , Cytochalasin D/pharmacology , Elasticity , HL-60 Cells/drug effects , Humans , Hydrodynamics , Models, Biological , Phenotype , Viscosity
7.
Oxid Med Cell Longev ; 2017: 4396467, 2017.
Article in English | MEDLINE | ID: mdl-28761621

ABSTRACT

Metastatic melanoma is an aggressive and deadly disease. Therapeutic advance has been achieved by antitumor chemo- and radiotherapy. These modalities involve the generation of reactive oxygen and nitrogen species, affecting cellular viability, migration, and immunogenicity. Such species are also created by cold physical plasma, an ionized gas capable of redox modulating cells and tissues without thermal damage. Cold plasma has been suggested for anticancer therapy. Here, melanoma cell toxicity, motility, and immunogenicity of murine metastatic melanoma cells were investigated following plasma exposure in vitro. Cells were oxidized by plasma, leading to decreased metabolic activity and cell death. Moreover, plasma decelerated melanoma cell growth, viability, and cell cycling. This was accompanied by increased cellular stiffness and upregulation of zonula occludens 1 protein in the cell membrane. Importantly, expression levels of immunogenic cell surface molecules such as major histocompatibility complex I, calreticulin, and melanocortin receptor 1 were significantly increased in response to plasma. Finally, plasma treatment significantly decreased the release of vascular endothelial growth factor, a molecule with importance in angiogenesis. Altogether, these results suggest beneficial toxicity of cold plasma in murine melanomas with a concomitant immunogenicity of potential interest in oncology.


Subject(s)
Cell Membrane/metabolism , Melanoma/drug therapy , Melanoma/metabolism , Oxidants/pharmacology , Plasma Gases , Animals , Cell Line, Tumor , Cell Membrane/pathology , Melanoma/pathology , Mice , Zonula Occludens-1 Protein/metabolism
8.
Opt Express ; 24(19): 22074-87, 2016 Sep 19.
Article in English | MEDLINE | ID: mdl-27661942

ABSTRACT

Imaging-based flow measurement techniques, like particle image velocimetry (PIV), are vulnerable to time-varying distortions like refractive index inhomogeneities or fluctuating phase boundaries. Such distortions strongly increase the velocity error, as the position assignment of the tracer particles and the decrease of image contrast exhibit significant uncertainties. We demonstrate that wavefront shaping based on spatially distributed guide stars has the potential to significantly reduce the measurement uncertainty. Proof of concept experiments show an improvement by more than one order of magnitude. Possible applications for the wavefront shaping PIV range from measurements in jets and film flows to biomedical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...